
SpiderMesh Integration Guide

Mesh EOB parallel‐polling strategy
caveats and mitigation strategies

Contents
1 Abstract 4

2 The EOB Strategy 4

3 Failure Mode A 8

4 Failure Mode B 8

5 Failure Mode C (hybrid) 11

6 What are the typical bottleneck/time delays/jitter sources, and how to mitigate those? 13

1

List of Figures
1 Proper operation of a typical computer‐driven direct‐driven EOB strategy 5

2 Failure mode A: TR 2 RF overspill . 10

3 Failure mode B: EOB desynch . 10

4 Next broadcast cycle starts . 11

5 Failure Mode C . 12

2

List of Tables
1 Glossary . 6

2 Glossary (continued) . 7

3 Basic Time Interval Variable Relationships . 9

3

1 Abstract
The Smartrek Mesh EOB parallel‐polling feature allowing speed optimization of the mesh, a.k.a. the
End‐Of‐Broadcast marker (code‐named EOB) mechanism in direct‐mode (i.e. not pre‐buffered by an
external state machine), has a few caveats to be considered in order to ensure full reliability when
designing a state machine leveraging said feature for a gateway at high polling rates.

The intent of this document is to clarify those caveats and their associated potential failure modes,
as a guide to the integrator, so that the EOB marker feature can be leveraged without hiccups. It
is worth mentioning that this feature is fully stable, functional and has been in use in production
designs since the first version of Smartrek Spidermesh. Issues can arise due to desynchronization
caused by client‐side delays or reaction time when receiving the EOB markers. This can be due to
OS CPU overuse, or to design issues such as (1) UI‐thread contention limiting the rate at which
processing can go, and jitters depending on OS’s UI thread management; (2) executing long running
operations that take too long to finish executing, such as remote database queries, logging, data
mining/processing, etc. in between EOB markers.

Warning!

Because of the complexities of the client‐side integration of Smartrek Mesh EOB parallel‐
polling feature, it is recommended to use an unsynchronized design paradigm for a faster
development‐to‐production cycle, or to field test cycle, unless power efficiency or raw speed
is a prime concern.

2 The EOB Strategy

4

Figure 1 shows the proper operation of a typical computer‐driven direct‐driven EOB strategy‐
implementing Smartrek mesh network constituting of 2 nodes, a gateway, and a host computer
interfaced to the gateway via serial port (FTDI cable), running at a mesh duty cycle of 50%, with
sleeping gateway mode disabled (that mode enables a functionality where a serial request must
come in before a set interval, after which gateway shuts down for power‐saving sleep; this mode is
disabled at factory reset).

The white rectangles show an individual broadcast cycle, complete with 2 phases, 1 broadcast out
phase (dedicated to gateway‐to‐node broadcast beacons), 1 broadcast in phase (dedicated to node‐
to‐gateway broadcast responses). The shaded gray rectangles are sleep intervals.

All timings in the RF‐POV side are deterministic to the millisecond. The bulk of the timing jitter is
typically caused by the HOST‐POV interfaces (a.k.a FTDI Serial‐2‐USB cable, OS serial drivers, and
software application messaging and threading delays).

Figure 1: Proper operation of a typical computer‐driven direct‐driven EOB strategy

Figure 1 shows the general process under which a host waits for an EOB‐MARKER to arrive on
the serial electrical line, and then sends a request to a given end node (AIR‐WRAP‐TX, where the
wrapped command can be anything, but typically is a VM execute command for remote sensor
acquisition/control for Smartrek networks).

— After a certain time delay determined by host hardware and software, it sends a high‐level
message to its serial port driver, which gets routed to the low level (RF‐POV).

— As one can see, the AIR‐WRAP‐TX serial command then arrives on the serial line and is then
fed into PORTIA’s internal serial buffer, which holds it until the TR.2.RF event as shown on
the diagram (when a node typically has to wake up from sleep for pre‐processing data and for
clock stabilization before a BOB event.

— When TR.2.RF event arrives, the serial buffer flushes into the RF mesh engine, which then
sends it over the air using Smartrek’s mesh technology, to the destination node whose target

5

6Table 1: Glossary

Acronym Name Description

SPIDERMESH Spidermesh protocol Codename for Smartrek’s cooperative mesh
protocol

PORTIA Smartrek Portia RF
node

Codename for Smartrek’s Spidermesh technol‐
ogy flagship RF module

RF Radio Frequency Technology set for transporting data over radio
link

TX Gateway Portia Serial
Transmit

UART (serial 3.3V) port’s electrical serial trans‐
mit line

RX Gateway Portia Serial
Receive

UART (serial 3.3V) port’s electrical serial receive
line

CTS Serial Clear‐To‐Send
line

UART (serial 3.3V) line being pulled down when
client is cleared to send data towards Portia via
RX line

TINY ATTiny816 The co‐processor (typically holding a serial
buffer to allow for sensor usage without requir‐
ing CTS line)

TR.L. Transparent layer the AtTiny816’s transparent firmware layer that
allows abstraction of CTS (with a very small
buffer size caveat emptor)

BCAST Broadcast Broadcast cycle (the time interval when the
CPU is fully dedicated for RF synchronized op‐
erations)

BOB Begin‐Of‐Broadcast When a broadcast cycle begins (when Portia’s
CPU starts running full‐bore for RF operations)

EOB End‐Of‐Broadcast When a broadcast cycle ends (when Portia’s
CPU previously dedicated for RF operations
releases to execute less‐time‐sensitive opera‐
tions)

EOB‐MARKER End‐Of‐Broadcast
Marker

Marker that gets sent by Portia over serial TX
line to flag host that a broadcast just ended (typ‐
ical jitter: on the order of microseconds). Typi‐
cal packet format seen is 0xFB 0x03 0x00 0x26
0xFF 0x00

OTA Over‐The‐Air Anything that gets sent over the air to a RF
node

AIR‐WRAP‐TX Air command wrapping
OTA packet transmit

Mechanism allowing transport of a command
sent to Portia’s RX line (that typically can recon‐
figure or execute something locally on a node)
toward a remote node somewhere. Typically
sent from gateway to an end‐node

AIR‐WRAP‐RX Air command wrapping
OTA packet receive

”The receive mechanism where the answer
from a remote node gets transported via RF
back to gateway, and sent over the gateway/’s
TX wire”

DYN Dynamic mesh configu‐
ration

The timing parameters and hop count param‐
eters that regulate proper mesh operation. En‐
coded via 6 bytes.

DTSLOT Mesh slot duration Mesh base slot duration (for 50 kbit/sec opera‐
tion, 10msec for single rate, 20msec for double
rate).

DTBCAST Broadcast cycle dura‐
tion

The full duration of a broadcast cycle (from
BOB to EOB)

DTSLEEP _INTERV AL Sleep interval The time spent “sleeping” or executing non‐
time‐critical non RF operations (such as serial
parsing)

7

Table 2: Glossary (continued)

Acronym Name Description

DTBCAST _INTERV AL Broadcast interval Time between 2 consecutive EOB (or 2 consec‐
utive BOB)

DTWAKEGUARD Wake‐up guard time The guard time before a BOB starts, where
serial operations are not allowed (CTS line as‐
serts)

DTEOB2MARKER Delay between EOB
and EOB‐MARKER

The delay between the actual end of broadcast
event, and when the EOB marker gets sent on
serial line

DTRM_PROC Remote processing
time

Remote processing time of an end‐node

DTTX_SER2USB Serial 2 usb cable la‐
tency, transmit

Latency time between the moment a serial
packet is sent on the Portia TX wire, and the
moment the USB equivalent flows to the host
CPU

DTRX_SER2USB Serial 2 usb cable la‐
tency, receive

Ibid. but from a USB request from host CPU,
back to Portia RX wire

DTTX_OS OS latency, transmit Latency time between USB reception of serial
packet flown thru Portia TXwire, until OS driver
delivers message to user host software

DTRX_OS OS latency, receive Ibid, but from host software message sent to
serial driver, back to USB interface

DTTX_HOST Total host‐side latency,
transmit

DTTX_HOST = DTTX_SER2USB +
DTTX_OS

DTRX_HOST Total host‐side latency,
receive

DTRX_HOST = DTRX_SER2USB +
DTRX_OS

DTEOB_TURNAROUND Effective EOB reaction
time

The effective total reaction time from the mo‐
ment an EOB‐MARKER gets sent on TXwire, to
the moment an answer from host gets received
on RX wire

DTEOB_MAX_TURNAROUND Max effective EOB re‐
action time

The maximum value allowable for
DTEOB_TURNAROUND for proper op‐
eration

DTHOST _TURNAROUND Host reaction time The host application‐side reaction time from re‐
ceipt of a serial message in the application‐level,
to the time it sends an answer

DTHOST _MAX_TURNAROUND Max host reaction time The maximum value allowable for
DNTHOST _TURNAROUND for proper
operation

BUF.OVF. Buffer overflow When a serial buffer overflows, and there is loss
of bytes

TR‐2‐RF Transfer to RF Event transferring serial buffer content in Portia
module to its internal RF transmit engine

RF‐POV Point‐of‐view of low
level RF

Reference frame of a SPIDERMESH running set
of module(s)

HOST‐POV Point‐of‐view of host Reference frame of a host connected to a gate‐
way via serial link

address was sent as part of the AIR‐WRAP‐TX serial frame), during the BCAST‐OUT phase of
the broadcast cycle.

— Then, after the current broadcast cycle elapses, the next sleep interval is when the end node
being targeted fetches its sensor data (by a mechanism typically being custom defined by
either the TINY’s firmware, or an EVM sitting inside the PORTIA module itself). For proper
operation, the end node must process and collate return data faster than the sleep interval
in which it is executing said processing, lest it overspills over it’s allowed processing time, in
which case the VM engine will kill user code to make sure the end node does not desynchro‐
nize from the mesh network as a result. Note that at the beginning of said sleep interval, an
EOB‐MARKER was received by the gateway.

— After this sleep interval, during the next broadcast cycle, the targeted end node sends its an‐
swer, which gets transported via RF to the gateway, which generates a serial answer packet
AIR‐WRAP‐RX as a result, and after which an EOB‐MARKER is also sent (at the end of the
current broadcast cycle).

This signifies that any host software correctly employing the EOB paradigm in direct mode as cur‐
rently described should expect exactly 1 EOB‐MARKER received in between an AIR‐WRAP‐TX
request and its answer counterpart, from the moment the requests gets sent on the RX line, to the
moment the answer transits on the TX line. If ever an AIR‐WRAP‐RX answer is not received within
1 EOB‐MARKER counted after the corresponding AIR‐WRAP‐TX request was sent, it either means
that:

— The request packet or its answer counterpart was dropped in transit (either from gateway to
node, or vice versa), or;

— Somehow the user software is not properly synchronized to the EOB‐MARKER, most likely
due to host‐side latency issues.

Here are the timings relevant to the diagram above. The conditions for proper mesh operation under
the EOB strategy umbrella are also calculated here (in red):

3 Failure Mode A
In layman’s terms, if the reaction between an EOB‐MARKER event and the next packet to be sent
“overspills” the boundary marked as TR.2.RF on the diagram, but the time interval between requests
is shorter than the time interval between broadcast cycles DTBCAST _INTERV AL, then the mesh
controller does not have time to buffer the request before a broadcast cycle starts, and is forced to
buffer it for the one after, therefore making the system “lag” behind by 1 broadcast cycle, and yet,
since the time interval is lower than the broadcast cycle interval, it means that the host still “follows”
themesh synchronization. Let this be called failure mode A, and is described by the diagram in Figure
2.

4 Failure Mode B
If the host‐side processing time delays are more severe and are higher than the time interval be‐
tween broadcast cycles, then the resulting failure mode B can be described as presented in Figure
3.

8

9

Table 3: Basic Time Interval Variable Relationships

Basic Time Interval Variable relationships Comments

DTSLOT 500/(b ∗ (double_rate?2 : 1)) In msec. B is the
bitrate in kbit/sec,
double_rate is a flag
whether system is oper‐
ating in double rate (aka
presetRFregister >=
16) or not.”

DTWAKEGUARD DTWAKEGUARD = DTSLOT

DTEOB2MARKER DTEOB2MARKER = 0 Typically 0 msec (i.e.
EOB gets sent as soon
as a slot shuts down
RF front‐end, even be‐
fore “logical” slot ends),
meaning that this can
be discarded from cal‐
culations in practice

DTBCAST DTBCAST = DTSLOT ∗ [(bcastin + bcastout) ∗
num_seq + (redux_enable?(num_redux ==
0?num_seq : num_redux))]

Dependent on DYN
configuration, as a
multiple of DTSLOT .
See Portia user manual
V. 4

DTBCAST _INTERV AL DTBCASTCY CLE = DTBCAST ∗ duty_cycle_div Dependent on DYN
configuration parame‐
ter duty_cycle_div. See
Portia user manual V.4

DTSLEEP _INTERV AL DTSLEEP _INTERV AL = DTBCAST _INTERV AL −
DTBCAST = DTBCAST ∗ (duty_cycle_div − 1)

DTRM_PROC DTRM_PROC = DTSLEEP _INTERV AL −
DTWAKEGUARD −DTEOB2MARKER

Figure 2: Failure mode A: TR 2 RF overspill

Figure 3: Failure mode B: EOB desynch

In such a case, the EOB‐MARKERs accumulate progressively in the low level serial buffer between
the RF network and the host‐side, since during the time the host processes data to be sent for a
single EOB‐MARKER received, more EOB‐MARKERs and RX packets accumulate, and they accu‐
mulate faster than they are removed, that is, until this causes a buffer overflow condition, or a state
machine crash on the host side if it is not specially tailored to mitigate that failure mode via back‐off
time delays or similar corrective measures. Since the timing of the received serial messages on the
host side depends on the host’s processing speed in this case because that processing speed is the
bottleneck, this means that the timestamp at which the host receives a given message (a.k.a. the
perceived message reception time in the HOST‐POV) does not correspond to the real timestamp
as seen if someone were to probe the TX and RX lines (RF‐POV), and in fact would lag behind
progressively as time passes by.

10

5 Failure Mode C (hybrid)
There is a third failure mode, which is seen when the buffer depth for OTA requests is small enough,
and results in literal serial message drop or message corruption.

An example of this possibility is with the ATTINY transparent layer prototype dating from August
2019, which uses (1) a processor having <512 bytes total RAM space, which means its receive
buffer is quite small and can hold only a few double‐rate messages at most (a double‐rate message
for Portia V2.3+ firmware at 50 kbit/sec can be up to 72 bytes in length).

Not only that, but the integration layer between the ATTINY and Portia, although for local serial
communications between gateway and host (for instance, in order to modify local registers), has a
buffer depth equivalent to the ATTINY’s allocated serial receive buffers, only has a buffer depth of
1 for air transported commands (AIR‐WRAP‐TX commands).

As a matter of fact, the mesh controller has a buffer depth of 1 by default for all OTA commands,
if one considers only the low‐level UART behavior at the TX, RX and CTS pins of the PORTIA
module. This can be verified by probing the serial lines and observing the behavior of the module
when an AIR‐WRAP‐TX command is sent out to a remote node on the gateway side: the CTS pin
immediately asserts itself to block further UART messages, until the next broadcast cycle starts, as
shown in Figure 4.

Figure 4: Next broadcast cycle starts

However, the regular mode of operation entails leveraging the CTS pin when coupling the module to
a host (be it a computer for the examples shown in this document, or a serial‐to‐Bluetooth bridge to
an Android core for Smartrek’s demo app, code‐named Sugarheld, which implements an EOB‐based
synchronous strategy to optimize throughput as well).

When the CTS pin is used, the module might have a buffer depth of 1 only for OTA requests,
but it would assert the CTS pin in that case, forcing the host low‐level UART hardware to buffer
the incoming OTA request messages upstream to the module, therefore offloading the buffering
capabilities to the host itself, and allowing deep‐buffer‐like functionality even if PORTIA has a buffer
depth of 1 for such messages.

However, since the ATTINY design dispenses of the CTS pin, the buffering limitations are immedi‐
ately apparent and applicable for any host connected to a PORTIAmodule that has this co‐processor

11

feature activated.

If one is only using the ATTINY for local UART communication, say for example if one attempts
to interface sensor heads to an end‐node via a UART port that does not support CTS lines, then
the ATTINY RX buffer depth limitation applies, which is a buffer depth not by message count but
rather by the total number of bytes (and because a typical sensor head single message is typically
much shorter than the ATTINY’s buffer depth maximum byte count, this strategy can be correctly
leveraged without any further ado).

However if one is using the ATTINY transparent layer (TR.L.) directly on the gateway for OTA re‐
quests, then the message‐level buffer depth of 1 applies (for PORTIA versions up as of 2019/10).
In this case, the host polling might see UART message drop issues as soon as there are too many
requests sent in the interval between two consecutive TR‐2‐RF events. And in the case where too
many UARTmessages are sent before the ATTINY buffer can be purged and transferred in full to the
PORTIA’s main processor (each ATTINY purge event occurs after an EOB event), then a corruption
where a serial message gets truncated, which could invalidate the internal PORTIA’s packet frame
parser during a while until it re‐recovers the correct 0xFB preamble (for API mode, at least).

Here is a diagram showing how such events can occur: they occur in the specific case when failure
mode B occurs, but where high variability in theDTHOST _TURNAROUND delays due to host‐side de‐
sign concerns occasionally cause a burst of multiple serial requests (worse if they are OTA requests)
in‐between two TR‐2‐RF events (Figure 5).

Figure 5: Failure Mode C

Thus, the 1st‐level corrective action to mitigate this hybrid failure mode C, is to disable any ATTINY
buffering on the gateway PORTIA module, and leverage the CTS pin of the module’s serial interface
in order to buffer upstreamwithin the host’s serial driver (for example, when using a FTDI USB‐Serial
bridge, the deep‐buffering is thereby offloaded to the FT232 chipset).

12

6 What are the typical bottleneck/time de‐
lays/jitter sources, and how to mitigate
those?
Even though mitigation of failure mode C is straightforward, to remove all possible failure modes
(A and B) would rather entail deeper software design decoupling, namely via the implementation of
separation of concerns between the low‐level serial‐port‐facing state machine polling nodes, and
the high‐level software architecture.

What can cause high variability in the host processing reaction timeDTHOST _TURNAROUND? There
could be many causes, sometimes simultaneously, depending on how the host‐side design is im‐
plemented. For example, a common mistake is employing data‐fetching or data‐updating blocking
operations that take a long time to complete, yet forces the software to wait until they complete,
before being able to send the next serial request to PORTIA.

Here are a few examples of possible host‐side bottleneck‐creating operations with unpredictable
timing:

— improper use of threads and mutexes

— processing messages on an overworked UI thread

— fetching data from remote databases or servers in a blocking, non‐buffered manner (which
usually entails use of TCP sockets where query times are unpredictable and depend highly
on network conditions, such as when the computer running the host software suddenly run
other high‐load network services, for example)

— long running disk fetching operations

— data crunching and data parsing on demand needed to create a given OTA request

The typical measures to ensure that no bottleneck impede network operation using EOB strategy
are to buffer the data‐layer holding the values that need to be updated/read to/from the mesh.

For example, if the data storage DB for a node network is held on a remote server, then a local copy
shall be periodically synchronized to the remote copy using a separate thread/process, while the
local copy data is fetched/updated on a separate, high priority thread, which is the only thread that
directly interacts with the serial drivers in order to communicate with the PORTIA gateway module.
All UI update/fetch operations are buffered using inter‐thread or IPC communication methods, such
as messaging, pipes, etc.

An example of such an implementation is Smartrek’s own App reference design (Sugarheld) which
holds a state machine leveraging the EOB‐MARKER functionality. In this case, a local SQLITE DB is
fetched/updated using a dedicated high‐priority Android service, with all UI communication being
done via IPC OS‐level Broadcast Intents (the equivalent to Window messages) to ensure no UI
interference with the polling service.

This SQLITE DB is synchronized to the cloud using a completely separate thread/service. Moreover,
mutexes are used only very sparsely as a thread synchronization within the polling state machine
operating the serial port, and messaging strategies are favored, in order to eliminate potentially
time‐jittery events such as thread starvation via mutex hogging, for instance.

13

Any design reference available?

Smartrek Technologies Inc. can provide engineering services, and software libraries implement‐
ing such strategies. Please contact Smartrek Technologies Inc. for further details.

14

	Abstract
	The EOB Strategy
	Failure Mode A
	Failure Mode B
	Failure Mode C (hybrid)
	What are the typical bottleneck/time delays/jitter sources, and how to mitigate those?

