
SMK900 Integration Guide Revision 5

SMK-900 SERIES
INTEGRATION GUIDE

PORTIA Module
Revision 5

1

SMK900 Integration Guide Revision 5

CONTENTS

Introduction 5

System 5
SMK900 System Overview 5
Mesh Network Systems 5
Frequency Hopping implications 6

Specifications 6
Broadcast Frame 7

Dynamic parameters 7
Broadcast Frame Structure 8

SMK900 Addressing and Network Segregation 8
Transparent and Protocol-formatted Mode 9

Transparent 9
Protocol-formatted 9

Virtual machine 9
Description 9
Virtual Machine Triggers 9

Mesh operation process triggers 10
External process triggers 10

Hardware 11
Serial Port 11
Module Pin Out 12
Through holes pinout 14
Through Holes Mounting 15
Surface mount pinout 16
Power Supply and Input Voltages 18
ESD and Transient Protection 18
Antenna Connector 18
External Sleep controller (optional) 18

Entering Program Mode 18
Select RF channel 18
Chip I2C Complementary Functions 19
Example VM User Program For Complementary I2C Functions 20

Protocol-formatted Messages 22
Protocol Formats 22
Message 22
Message Format Details 23

Summary of message types 23
EnterProtocolMode 23
EnterProtocolModeReply 24
DeviceReset 24
DeviceResetReply 24

2

SMK900 Integration Guide Revision 5
TxLongData 24
TxReduxData 25
RxDataPacket 25
RxReduxDataPacket 25
RXBcastInSniffedDataPacket 25
BcastUART2TrxBufferDone 26
RXBcastInSnifferAirDataPacket 26
RXBcastOutSnifferAirCmd 26
DynConfig 27
DynConfigReply 27
GetRegister 28
GetRegisterReply 28
SetRegister 28
SetRegisterReply 29
TransferConfig 29
TransferConfigReply 29
TXAirCmdWrapper 29
RXAirCmdWrapper 31

Configuration Registers 31
Register table 32
Registers Description 33

addressBuf 33
addressBufLen 33
dyn 33
nwkID 33
hopTable 34
power 34
uart_bsel 34
nodeType 34
sleepMode 34
extSlpCtrlI2CAddress 34
extSlpCorrectionFactor 35
presetRF 35
cryptoData_qWord0 35
cryptoData_qWord1 35
i2c 35
meshExecActiveFlag 35
sniffFlagsMask 36
enableNotificationFlagsMask 37
gpStorage_qWordx 37

Developer Kit 38
Porta Adapter Board 38
Arduino-compatible Board 38

SMK900 Certifications Information 39

3

SMK900 Integration Guide Revision 5
United State (FCC) 39
ISED (Innovation, Science and Economic Development Canada) 40

Labeling requirements 40

ANNEXE 41
Virtual Machine IDE 41

4

SMK900 Integration Guide Revision 5

Introduction
SMK900 transceivers provide for highly-reliable, long-range, and low power mesh networking radio
applications. They use frequency hopping spread spectrum (FHSS) technology to ensure resistance to
multipath fading and robustness, as well as for compliance with 900 MHz unlicensed band regulations in
Canada and the US. The SMK900 supports a CTS-enabled serial port interface with data rates ranging from
1.2 to 230.4 kbps, with two possible modes of operation (transparent ASCII and protocol-formatted). For
easy integration, error correction and buffering is all accomplished within the mesh controller module. A
Virtual Machine is also available so that the user can leverage the module peripherals of the radio processor
to perform operation such as signal processing and remote control devices. The module accepts multiple
sleep synchronization clock sources: internal crystal, internal RC, or with an external I2C-line sleep
controller for optimal sleep management. Key features include:

● Multipath fading resistance, with more than 51 frequency channels, 902.7 to 927.4 MHz
● Receiver protected by low-loss SAW filter for excellent receiver sensitivity and interference

rejection
● Support for high-speed mesh networking applications
● Maximum range in free space exceeds 10 km (antenna height dependent)
● Typical range in forested areas between 250 and 500 m
● Transparent ASCII serial data mode for easiest integration available
● Advanced protocol-formated serial data mode available for maximum flexibility
● Accessibility to multiple analog and digital I/O via Virtual Machine
● Serial baud rates between 1.2 and 230.4 kbps
● AES 128 bits encryption available
● Module configuration stored in non-volatile memory
● Local and Over-the-air configuration for the radio
● Virtual Machine locally and remotely programmable at whim
● VM engine bytecode can be locally or remotely accessed/modified at whim via IDE

System

SMK900 System Overview
A SMK900 radio can be configured to operate in two main modes: ​gateway ​or ​node​. A ​gateway controls a
whole mesh network and functions as the main coordinator ​node​, and its usual primary function is to
bridge a ​host such as a PC, tablet, or internet ​gateway​, with the rest of the mesh network. A ​node is a
transceiver that acts as a repeater inside of the mesh network. The primary function of a ​node is to
allow communication between an external devices and the ​gateway​, or to serve as a bridge between
analog and/or digital inputs/outputs such as for sensor arrays.

It is possible to configure any ​node so that it filters messages by MAC address, or configure it so that it
acts like a ​sniffer relaying all messages transiting through the mesh network to the client circuitry via
serial port.

Mesh Network Systems
The topology used by a SMK900 radio is that of a broadcast-only mesh network, with sleep-wake
synchronization handled by the ​gateway​. This mean that any SMK900 radio transmission sends a
broadcast to the whole mesh network. There are no provisions for pure ​unicast messaging, and such
needs are usually handled by integrator using a higher-level protocol sitting on top of the SMK900
protocol. The maximum of broadcast transmission of the same messages over the mesh network
depend on the number of ​hops ​allowed.

Multiple independent mesh networks may coexist in the same physical space by configuring ​nodes ​with
differing FHSS channels, different network IDs and/or different encryption patterns. Each of those

5

SMK900 Integration Guide Revision 5
mesh networks have to be controlled by its own ​gateway​. The bridging between ​gateways ​is handled by
the integrator.

Frequency Hopping implications
The SMK900 uses the FHSS approach in order to ensure that co-located networks using different FHSS
hopping tables (a.k.a ​channels​) can coexist with graceful degradation of network performance as the
number of conflicting networks overlapping increases. This however comes with the price that any ​node
needs a certain time delay (called "​seek time​") in order to connect itself to its desired network (this delay
can range between seconds to minutes, depending on the sleep interval between wake cycles for said
network. For instance, at a sleep interval of 1 second, the seek time is of the order of 30 seconds to 1
minute, and this seek time increases linearly with said sleep interval.

Specifications
Absolute maximum ratings
Supply voltage -0.5 to 6.5V

All input/output pins -0.5 to 3.3V

Specification Descriptions

Operating Temperature -20 to 70 �C guaranteed for max up count
-40 to 85 �C guaranteed for half up count

Storage Temperature -40 to 85 �C
Power requirement
Supply voltage 3.3 to 5.5V

Transmit Current 130 mA peak

Receive Current 20 mA

Idle 30 uA
Transceiver
Urban / Indoor / NLOS* 100 to 500m

Outdoor / LOS** 10Km+

Transmit Power Low: 50mW High 100mW

RF Data Rate 50 Kbits

Number Of Channel 5

Frequency band 902 to 928 MHz

Receiver Sensitivity -110 dBm

Antenna Connector U.FL

Antenna Gain Maximum 3 dBi

Max Hop Count 31

Encryption OTA AES 128 bits

Virtual Machine

Memory 16 KBytes

* NLOS: None Line Of Sight
** LOS: Line Of Sight

6

SMK900 Integration Guide Revision 5

Broadcast Frame
In order to ensure synchronization of every nodes within a given network, the ​gateway ​always initiates
a broadcast beacon periodically, which encompasses a broadcast parameters. This is the primary
construct within which all nodes communicate. In particular, there is Time-Division Multiple Access
(TDMA) slotting mechanism that specify unique slots, called broadcast phases, for outbound
communication from a ​gateway ​to ​nodes​, and inbound communication from a ​node ​back to a ​gateway​.

Dynamic parameters
There is 6 parameters inside the broadcast beacon. They will be referred to in this integration guide
by the moniker: ​dynamic parameters​, or, in short, ​DYN​. Configuration of those parameters usually
take the form of a sequence of 6 bytes, with 1 byte per parameter, as follows:

DYN <= {B​O​, B​I​, N​H​, N​R​, R, D}

For each ​broadcast frame​, the periodic delay between broadcast as well as its length being
determined by:

B​O​: number of ​gateway ​to ​node ​messages per broadcast (also called ​broadcast out phase count​),
B​I​: number of ​node ​to ​gateway ​messages (also called ​broadcast in phase count​),
N​H​: the maximum number of ​hops​ for the network

(i.e. maximum number of time a message can be relayed from ​node ​to ​node​),
N​R​: number of random-access specialized hop slots (called ​redux​),
R+​: specialized slotting mechanism enabled
D​: ​inverted sleep-wake duty cycle ratio ​D​ (min. value is 1),

The broadcast time can be then calculated as:
T​BCAST​[msec] = 10 * (​N​H​*(​B​O​ + ​B​I​) + ​N​R​*R​)

The interval between each broadcast is:

T​INTERVAL​[msec] = ​T​BCAST​ * ​D

For the vast majority of applications, the default settings, where ​B​O = ​B​I = 1 and ​R = 0, are applicable,
in which case the timing equations simplify to:

T​BCAST​[msec] = 20 * ​N​H
T​INTERVAL​[msec] = ​T​BCAST​ * ​D

Allowable values for each of those are, with default values in (​boldface​):

B​O​: [(​1)​, 2, 3, 4]
B​I​: [(​1)​, 2, 3, 4]
N​H​: [1, 2, ... ,4, (​5​), 6, ... , 31]
N​R​: [(​1​)]
R: [(​0​), 1]
D: [1, 2, 5, (​10​), 20, 40, 80]

Note that D is defined as ​T​INTERVAL / ​T​BCAST​, and is thus the inverse of what is commonly defined as
the network ​duty-cycle​, which is defined as follows:

duty cycle​[%] = 100% / D

Note that there are no parameters controlling any acknowledgement/retry cycles in case a message
from one ​node ​to another fails to pass through. It is assumed that the onus of managing packet
delivery failure occurrences fall upon the shoulder of the higher-level protocol as implemented by

7

SMK900 Integration Guide Revision 5
the integrator. The easiest way to do so, say for a mesh network with standard round-robin sensor
polling, is simply to detect reply failure at the host side connected to the ​gateway​, and retry polling
for a number of times, before flagging a failure to user in the case a maximum number of retries has
been hit. Note, however, that there is an internal CRC-based mechanism for controlling packet
integrity, so any packet received can be assumed for the majority of applications as containing valid
and uncorrupted information.

Broadcast Frame Structure
The following schematic shows the typical structure of periodic network broadcast cycles, for the
following configuration DYN = {1, 2, 4, 1, 1, 5}:

SMK900 Addressing and Network Segregation

Each module has a unique factory-configured 3-byte address, called the MAC address. In the standard
protocol-based serial data mode, this MAC address can be used to specify to which destination a
message is intended, although this is not a necessary part of the protocol due to the fact that every
message is treated as a broadcast to all ​nodes​. The MAC address 0x000000 is treated as an ​invalid
address. There is no broadcast address, in contrast with regular IEEE802.15.4 schemes (where a
broadcast address is typically the highest possible address for a given number of bytes encoding said
address). Note that in transparent serial data mode, MAC addresses are not used, and in this case the
system behaves as a transparent point-to-multipoint system.

Every ​node ​also has a configurable network ID, called ​NWKID​, between 0 and 7, which can be used to
segregate multiple networks hopping on the same FHSS channel in order to reduce the impact of
interference. Every ​node ​can also be encrypted using an unique network key, which not only secures a
given mesh network, but also allows for more segregation between coexisting networks within the
same physical space.

8

SMK900 Integration Guide Revision 5
The primary means for network segregation is of course the selection of the FHSS channel via a
configuration variable named ​HOPTABLEID​. The current implementation allows for values between 0
and 5 (i.e. 6 different hop tables).

Transparent and Protocol-formatted Mode
A SMK900 based network can be configured to use either the ​transparent or the ​protocol-formatted mode
for the serial port interface.

Transparent
The ​transparent mode allows for basic, unsynchronized integration which emulate a simple
point-to-multipoint serial link between a ​gateway ​and its ​nodes​. In this case, the message is assumed
to be of standard ASCII format, with the special ASCII terminator characters 0x13 (Carry) or 0x10
(Line Feed) are used as markers to trigger the end of a message stream, and thus to trigger
transmission over radio waves.

Protocol-formatted
Protocol-formatted messages also referred to as Application Programing Interface (API) are
discussed in the following sections. rotocol-formatted messages usea start-of-message marker,
followed by message length, message information type (or ​command byte​), an optional string of
MAC addresses, and finally, the payload.

Virtual machine

Description
SMK900 radios feature an embedded Virtual Machine (VM) allowing Over-The-Air (OTA) firmware
updates. This allows application-specific user scripting to control the internal modules of the SMK900
radio and ease interfacing with external devices. The main processor controls and manages wireless
mesh operations and executes VM user scripts.

TheVirtual Machine is available when the serial protocol is configured to protocol-formatted mode
(not to transparent mode). An IDE is available for Virtual Machine development, which includes basic
compiler, disassembler, ​node ​configuration and VM upload/erase functions as well as direct node serial
connection and OTA firmware node upload with a gateway.

Virtual Machine Triggers
Virtual Machine script execution is managed by the mesh network process. This is to ensure mesh
operation priority over the Virtual Machine. VM execution is triggered by various events, which are
defined in the table below.

9

SMK900 Integration Guide Revision 5

Trigger Description

Bootup Bootup system initialization

Enter Seek Mode The transceiver is attempting communication with the ​gateway ​over the mesh
network.

Leave Seek Mode The transceiver has established a link to the mesh network.

Enter Broadcast The transceiver wakes up to enter the broadcasting cycle

Leave Broadcast Broadcasting cycle has ended and the transceiver is ready to enter sleep mode.

Serial Event A message from a local serial device has been received by the transceiver. Note:
The local serial device must read CTS low before sending.

Air command An execute air command message has been received. Typically, air command is
used to control or read modules connected to the radio.

The available triggers in the mesh network cycle are shown in the figures below.

Mesh network triggers

External triggers

10

SMK900 Integration Guide Revision 5

Hardware

The SMK900 module provides multiple application interfaces: a primary communication serial port (CTS
enabled), a dedicated I2C port (Master mode only), and 13 generic digital I/O. The latter can be
reconfigured to ADC (2x), to DAC (2x) or to PWM hardware signalling or clock generation (2x). The
SMK900 transceiver can also use advanced peripherals such as hardware timers and event capture/compare
within custom bytecode executed by its VM engine.

Serial Port
The host processor is tied to the SMK900 module over a full-duplex UART interface serial port with
CTS pin hardware control. aud rate is configurable from 1.2 to 230.4 kbps, with non standard baud
rates also achievable (between the aforementioned boundaries). The serial port is configured for
standard 8-bit data with no parity and 1 stop bit.

Baudrate configuration is done on the ​uart_bsel ​register (register offset 0x06) This register can be split
into: ​BSEL = ​uart_bsel​[0..11], and ​BSCALE = ​uart_bsel​[12...15]. where ​BSCALE is a 4-bit signed integer,
ranging from -7 (0b1001) to +7 (0b0111). For positive values of ​BSCALE​, the baud rate is prescaled by
2​BSCALE​. or negative values the baud rate will use fractional counting, which increases resolution.

The formulae for calculating the effective baud rate ​f​BAUD​:

Conditions Baud Rate (in baud or Hz) BSEL Value

Thus, here is a list of standard baud rates and their corresponding suggested configuration values:

Baud Rate (baud) BSEL BSCALE uart_bsel
2400 831 (0x33F) -1 (0b1111) 0xF33F
4800 829 (0x33D) -2 (0b1110) 0xE33D
9600 825 (0x339) -3 (0b1101) 0xD339

19200 817 (0x331) -4 (0b1100) 0xC331
38400 801 (0x321) -5 (0b1011) 0xB321
57600 1047 (0x417) -6 (0b1010) 0xA417
115200 983 (0x3D7) -7 (0b1001) 0x93D7
125000 7 (0x007) 0 (0b0000) 0x0007
230400 428 (0x1AC) -7 (0b1001) 0x91AC

11

SMK900 Integration Guide Revision 5

Module Pin Out
Electrical connections to the SMK900 are made through the I/O pads and through the I/O pins
(depending on whether it is the SMT castellated or the through-hole version). The hardware I/O
functions are detailed in the table below (note that the MCU alias is useful only when using advanced
VM programming using accessible native MCU functionalities, and only the mutable generic I/O pins
are available for such purposes, and are denoted by the principal name IO_x, where x is the generic pin
number as used in VM programming):

PIN
TH

PIN
XB

PIN
SMD NAME ALIAS I/O DESCRIPTION

1 10 1,13, 28 GND - - Power supply and signal ground. Connect to the host
ground.

2 6 9 IO_12 TX_LED O
(I)

Transmit LED pin. This pin activates only when a radio
transmission is active.

3 9 12 IO_11 BCAST_
LED

O
(I)

Broadcast LED pin. This pin activates/deactivates itself in
order to mark the beginning and the end of a broadcast
cycle.

4 15 I2C_PWR - O

I2C Power pin. Can be configured by changing the
powerBusMode byte in the I2C configuration register.
Allows to turn on/off an I2C peripheral connected to the
module on demand when required (usually when a VM
execution is running after a broadcast cycle).

5 2 5 TXD - O Serial data output from the radio.
6 3 6 RXD - I Serial data input to the radio.

7 12 15 /CTS - O Host serial port CTS pin. When the line goes high, the
host must stop sending data.

8 14 IO_2 RTS I
(O) Generic I/O.

9 8 11 IO_5 DAC0 I
(O) Generic I/O. Alternately, hardware DAC channel 0.

10 7 10 I2C_SCL - O I2C Master SCL clock pin. This pin should be pulled via
resistor to a 3.3V high line (possibly the 3.3V_OUT pin).

11 19 22 I2C_SDA - I/O I2C Master SDA data pin. This pin should be pulled via
resistor to a 3.3V high line (possibly the 3.3V_OUT pin).

12 20 23 IO_1 - I
(O) Generic I/O.

13 IO_6 DAC1 I
(O) Generic I/O. Alternately, hardware DAC channel 1.

14 VCC - I Power supply input, +3.3 to +5.5 Vdc.

15 10 1,13,28 GND - - Power supply and signal ground. Connect to the host
ground.

16 10 1,13,28 GND - - Power supply and signal ground. Connect to the host
ground.

17 5 8 /RESET - I Active low module hardware reset.

18 IO_3 ADC0 I
(O) Generic I/O. Alternately, hardware ADC channel 0.

19 IO_4 ADC1 I
(O) Generic I/O. Alternately, hardware ADC channel 1.

12

SMK900 Integration Guide Revision 5

20 4 7 IO_9 MISO I
(O)

Generic I/O. Alternately, hardware SPI Master In Slave
Out pin, or OC1A Timer C wave out Channel A.

21 14 IO_8 MOSI I
(O)

Generic I/O. Alternately, hardware SPI Master Out Slave
In pin, or OC1B Timer C wave out Channel B.

22 17 20 IO_7 /SS I
(O) Generic I/O. Alternately, hardware SPI enable pin.

23 18 IO_10 SCK,
 MIRROR

I
(O)

Generic I/O. Alternately, hardware SPI port clock, or
MCU event mirror output pin.

24 1, 13 4,16 3.3V - O
Stable, low-power 3.3V output. Use with low-power
devices only (<10 mA average power consumption, <20
mA peak consumption).

25 24 IO_0
ADC_EXT

_
REF

Generic I/O. Alternately, ADC external reference voltage
pin. The voltage at this pin can be used by the ADCs as a
reference for ratiometric measurements.

26 RSVD -
27 RSVD - Reserved pin. Leave unconnected.
28 10 1,13,28 GND - Connect to the host circuit board ground plane.
29 RSVD - Reserved pin. Leave unconnected.
30 10 1,13,28 GND - Connect to the host circuit board ground plane.

 2 DM - I/O USB negative wire (white)
 3 DP - I/O USB positive wire (green)

13

SMK900 Integration Guide Revision 5

Through holes pinout

14

SMK900 Integration Guide Revision 5

Through Holes Mounting

15

SMK900 Integration Guide Revision 5

Surface mount pinout

16

SMK900 Integration Guide Revision 5

17

SMK900 Integration Guide Revision 5

Power Supply and Input Voltages
SMK900 radio modules can operate from an unregulated DC input in the range of 3.3 to 5.5 V with a
maximum ripple of 5% over the temperature range of -40 to 85 °C. Applying AC, reverse DC, or a DC
voltage outside the range given above can cause damage and/or create a fire and safety hazard. Further,
care must be taken so logic inputs applied to the radio stay within the voltage range of 0 to 3.3 V.
Signals applied to the analog inputs must be in the range of 0 to ADC_EXT_REF (Pad/Pin 25) if the
reference is used as such, else the range of 0 to VCC shall be used. Applying a voltage to a logic or
analog input outside of its operating range can damage the SMK900 module.

ESD and Transient Protection
The SMK900 circuit boards are electrostatic discharge (ESD) sensitive. ESD precautions must be
observed when handling and installing these components. Installations must be protected from
electrical transients on the power supply and I/O lines. This is especially important in outdoor
installations, and/or where connections are made to sensors with long leads. Inadequate transient
protection can result in damage and/or create a fire and safety hazard.

In the case where low power consumption is desired, dedicated logic level converters, or equivalent
FET circuitry can be used to achieve such specifications.

Antenna Connector
The antenna connector is a U.FL type male connector which can either be mated to a PCB host board or
directly to an antenna using the appropriate adapter. Impedance of all components from the connector
up to the antenna part has to be 50 Ohms.

Additional I2C Functions

the following I2C commands are available for execution from a custom user VM script(see section 5
for more details):

Name Type Description
Master

command byte
stream

Expected slave answer
byte stream

Read
configura

tion
Read

Read in the following order: voltage (1 byte), RF channel (1
byte), I2C address (1 byte), expected reference voltage (2 bytes,
Little-Endian byte ordering). Voltage is the input VCC voltage
of the external sleep controller, using the internal chip FVR
voltage reference. Precision expected of this voltage
measurement is ±0.15 V, and is thus usually sufficient to
evaluate battery pack status if standard alkaline batteries are
used. The raw voltage value sent VRAW is in increments of
0.05V, and is an unsigned 8-bit integer. In other terms, V[Volt] =
VRAW * 0.05. The expected reference voltage REFVOLT is the
actual reference voltage of the internal FVR used for ADC
measurements, which defaults to 2048 mV (value stored in
16-bit as a mV value). In the case where there is a discrepancy
in the voltage assessment of VCC by the external sleep
controller V​ext​ and a calibrated measurement in laboratory V​lab​,
then the REFVOLT should be corrected in the following
manner: REFVOLT <= REFVOLT * V​lab​ / V​ext​.

[(ADDR * 2)+1]

[VOLTAGE,
RF channel,
ADDR,
REF voltage LS byte,
REF voltage MS byte]

18

SMK900 Integration Guide Revision 5

Change
I2C

address

Writ
e

Write a new I2C address to the external sleep controller. Note
that changes are effective without having to reboot the external
sleep controller chip, less than 100 msec after the I2C command
is sent on the I2C bus.

[ADDR * 2, 0x28,
new I2C ADDR] N/A

Change
reference
voltage

Writ
e

Change the reference voltage used for calibrating the voltage
measurements. Change is valid and enforced < 100 msec. after
end of I2C command.

[ADDR * 2, 0x11,
new REF voltage
LS byte, new REF
voltage MS byte]

N/A

Change
RF

channel

Writ
e

Change the generic RF channel value via I2C. Change is valid
and enforced < 100 msec. after end of I2C command.

[ADDR * 2, 0x18,
new RF channel
value]

N/A

Note that all byte streams are notated as a sequence of bytes in brackets [], and that ADDR is the current
I2C address of the external sleep controller chip when the command is issued from the I2C master side.

19

SMK900 Integration Guide Revision 5

Example VM User Script using I2C Functions
Here is a VM example for a simple ​node ​that (1) at boot-up, queries the external sleep controller for
the RF channel variable, and configures the transceiver ​NwkId and ​HopTable configuration registers
accordingly (see section 7.3 for details about configuration registers); (2) when receiving an air
command from a ​gateway​, it queries the external sleep controller voltage, and sends this back as the
gateway ​answer, in conjunction with the last known received packet RSSI value.

#include​ "SMK900.evi"
//Note that SMK900.evi include code listing is appended as an annex of this document.

//This include defines transceiver-specific constants as well as available special-purpose

//transceiver functions. See section 8.2.1 for details.

#define​ RFCHANNEL_MAX_RETRIES_COUNT_STD (20)
#define​ SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc (0x91)

function​ exec_bootup(){
local​ rfChannel;
local​ retryCount;

local​ nwkid;
local​ hoptableid;
local​ i;
retryCount=0;

//Hardcode a delay of 100usec * 1000 * 60 = 6 seconds

for​(i=0;i<60;i++){
Delay​(1000);

}

while​(retryCount<RFCHANNEL_MAX_RETRIES_COUNT_STD){
if​(​I2C_Start​(SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc)){

//Sleep controller answered NAK

I2C_Stop​();

retryCount++;

Delay​(5000);//delay 500 msec before retrying
}

else​{

//​Sleep controller answered ACK
I2C_ReadAck​(); ​//1st byte is voltage. We discard
rfChannel = ​I2C_ReadNak​(); //2nd byte is RF channel

I2C_Stop​();

//Define NwkId and HopTable register values according to read RF channel value

//stored in external sleep controller

nwkid = rfChannel % ​NWK_COUNT​;
hoptableid = ​HOPTABLE_50K_START​ + (rfChannel % ​HOPTABLE_50K_COUNT​);

//REGISTER_xxx are VM-accessible mesh controller configuration parameters

GetRegisterRAMBUF​(8, ​REGISTER_NWKID​);
GetRegisterRAMBUF​(9, ​REGISTER_HOPTABLE​);
if​((nwkid!=​GetBuffer_U8​(8)) || (hoptableid!=​GetBuffer_U8​(9))){

SetBuffer​(8,nwkid,1);
SetBuffer​(9,hoptableid,1);
SetRegisterRAMBUF​(8, REGISTER_NWKID);
SetRegisterRAMBUF​(9, REGISTER_HOPTABLE);

TransferConfigEEPROM​();
//force reset by letting watchdog expire (the mesh controller

//has a safety watchdog that runs at all times, and set by default at 8 sec)

while​(1){}
}

break​;
}

}

}

//Custom VM function executed when end node mesh controller receives an "air cmd", which is

//a command from coordinator node to execute a VM function over the air

function​ exec_aircmd(){
local​ V;

//​time to read external sleep controller voltage using I2C bus
if​(​I2C_Start​(SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc)){ //failure

V=0;

}

else​{

V = ​I2C_ReadNak​();

}

I2C_Stop​();

SetBuffer​(0,​GetRSSI​(),1); //​set first answer byte as the RSSI of the last known good packet received
SetBuffer​(1,V,1); ​//set 2nd answer byte as voltage fetched via I2C bus

20

SMK900 Integration Guide Revision 5
Send​(2);

}

//Common entry point for all VM executions: the subfunction to b executed is selected according to trigger

//type via GetExecType().

function​ main()
{

local​ execType;

execType = ​GetExecType​();
if​(execType==​MESHEXECTYPE_BOOTUP_bm​){

exec_bootup();

}

else if​(execType==​MESHEXECTYPE_AIRCMD_bm​){
exec_aircmd();

}

}

21

SMK900 Integration Guide Revision 5

Protocol-formatted Messages

Protocol Formats
SMK900 module can work in one of two serial data modes - transparent or protocol. Transparent mode
requires no data formatting, but cannot leverage the embedded ​node ​addressing schemes, nor can
access configuration and VM upload/erase/check/execute functions. Thus, transparent mode is adapted
mainly for simple drop-in serial wire replacement for point-to-multipoint applications.

Thus, a ​gateway that needs to send messages to a specific ​node​, or a ​node ​replying to said ​gateway​, must
use protocol formatting if any advanced functionality other than simple ASCII message broadcast is
needed, such as access to sensor I/O commands, configuration commands and replies, event
monitoring, etc. All protocol-formatted messages have a common header as shown in Figure :

0 1 2 3 4...

SOP Length
(LSByte)

Length
(MSByte) PktType Variable number of arguments ...

The scale above is in bytes.

The ​Start-of-Packet (SOP) character, 0xFB, is used to mark the beginning of a protocol-formatted message
and to assure synchronization in the event of a glitch on the serial port at startup.

This is followed by two length bytes, in Little-Endian ordering (lowest-significant byte first). This 16-bit
value corresponds to the length of the ​remainder of the message following the length bytes themselves,
i.e. the length of the entire message - 3.

The Packet Type (PktType) byte specifies the type of message. It is a bitfield-oriented specifier, decoded
as follows:

Bit(s) Meaning

7 Address send back request bit
6 Reserved for future use
5 Event - this bit is set to indicate an event message
4 Reply - this bit is set to indicate a message is a reply

3..0 Type - these bits indicate the message type

Message
Messages generated on the serial interface by the user are referred to as ​host messages, and have a
PktType reply bit (4) cleared. Messages generated on the serial interface by the radio are referred to as
reply or ​event messages, and have either bit 4 (replies) or bit 5 (event) of the PktType byte set. For most
commands, there is a corresponding reply message, which is either an acknowledgement message.

Errors are usually flagged using event messages. Messages received by the radio and relayed back to
user, such as ​node ​reply messages, are flagged as event messages as well. Note that for all quantities
encoded using multi-byte, the byte ordering is Little-Endian, except for text strings. Little-Endian byte
order places the lowest order byte in the left-most byte of the argument and the highest order byte in
the right-most byte of the argument.

A command sent from the host to a module locally via serial port in order to initiate an action locally, or
to read/write to the module locally, is the default type of message. However, there is also another type
of message, which are called ​air command wrapped messages​. Those are typically akin to local destination
messages, but wrapped around a meta-message, which, combined with a destination MAC address,
allows to execute said command at a remote transceiver ​node ​location with said MAC address as if that
command was locally executed at this remote ​node ​location. Thus, it is possible to use the same

22

SMK900 Integration Guide Revision 5
command set (encapsulated within those meta-messages, called ​air command wrappers​) to change the
configuration and act on remote ​nodes ​in a straightforward manner. It is also possible to send ​air
command wrapped messages to multiple MAC addresses (up to 4), if multi-phase mode is used (only
possible when the number of ​broadcast in phases​ ​B​I​ > 1).

Message Format Details

Summary of message types

Com-
mand Reply Event Type Direction

AirCmd.
Wrapped,
no MAC

AirCmd.
Wrapped,
w/ MAC

Gateway
cmd.

Node
cmd.

0x00 - - EnterProtocolMode from Host - - X X

- 0x10 - EnterProtocolModeReply from Radio - - X X

0x01 - - ExitProtocolMode from Host - - X X

0x02 - - DeviceReset from Host 0x02 0x82 X X

- 0x12 - DeviceResetReply from Radio - - X X

0x05 - - TXLongData from Host - - X X

0x07 - - TXReduxData from Host - - X

- - 0x26 RXDataPacket from Radio - - X X

- - 0x28 RXReduxDataPacket from Radio - - X

- - 0x29 RXBcastInSniffedDataPacket from Radio - - X

- - 0x2A BcastUART2TrxBufferDone from Radio - - X X

- - 0x2B RXBcastInSnifferAirDataPacket from Radio - - X

- - 0x2C RXBcastOutSnifferAirCmd from Radio - - X

0x0A - - DynConfig from Host - - X

- 0x1A - DynConfigReply from Radio - - X

0x03 - - GetRegister from Host 0x03 0x83 X X

- 0x13 - GetRegisterReply from Radio 0x13 0x93 X X

0x04 - - SetRegister from Host 0x04 0x84 X X

- 0x14 - SetRegisterReply from Radio 0x14 0x94 X X

0x0B - - TransferConfig from Host 0x0B 0x8B X X

- 0x1B - TransferConfigReply from Radio 0x1B 0x9B X X

0x0C - - TXAirCmdWrapper from Host - - X

- - 0x2D RXAirCmdWrapper from Radio - - X

0x0D - - VMFlash from Host 0x0D 0x8D X

- 0x1D - VMFlashReply from Radio 0x1D 0x9D X

0x0E - - VMExecute from Host 0x0E 0x8E X X

- 0x1E - VMExecuteReply from Radio 0x1E 0x9E X X

- - 0x27 Announce/Error from Radio 0x27 0xA7 X X

EnterProtocolMode
This command is used to enter protocol formatted mode from transparent serial mode via a special
keyword (transceiver will reply with an ​EnterProtocolModeReply​ message).

 EnterProtocolMode (special keyword command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x08 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 - 0x10 Keyword 0x44 0x4E 0x54 0x43 0x46 0x47 0x00 0x00 = Keyword string

23

SMK900 Integration Guide Revision 5

EnterProtocolModeReply
This reply is the expected reply from transceiver module to the corresponding command
EnterProtocolMode​.

 EnterProtocolModeReply (reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x10 = EnterProtocolModeReply

DeviceReset
This resets the transceiver module (for local UART commands only, the transceiver will reply with
a ​DeviceResetReply​ message). This command can be wrapped as an ​air command​.

 DeviceReset (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x02 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x02 = DeviceReset

0x04 Reset Type 0x00 = Normal reset

DeviceResetReply
This is the reply message (only for local UART commands) after the transceiver receives a
DeviceReset command. An equivalent ​air command ​reply wrapped accordingly can be sent out from
a ​node ​back to its ​gateway ​if the latter sent an ​air command with ​DeviceReset as the wrapped
command.

 DeviceResetReply (reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x12 = DeviceResetReply

TxLongData
Basic data send in command mode, that can span multiple consecutive broadcast phases. Note that
no reply is tied to this command. In the case where the transmitter is a ​gateway​, then all ​nodes
directly or indirectly connected to that ​gateway ​via the mesh network that properly receives the
broadcasted packet will send a corresponding ​RxDataPacket reply to their own hosts. In the case
where the transmitter is a ​node​, then only the ​gateway ​will send a corresponding ​RxDataPacket reply
at reception of packet. If another ​node ​needs to monitor that signal, then the proper ​sniffer
configuration register flags (RAM bank register ​sniffFlagsMask​, flag ​BROADCASTIN_bm​) must be
written (see section 7.3), in which case the corresponding ​sniffed receive replies to host will be in the
form of ​RXBcastInSniffedDataPacket​.

 TxLongData (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x05 = TxLongData

0x04 Start Broadcast
Phase

0x00-0x03 = Start Broadcast Phase (range is in practice limited to B-1, where B is the
number of Broadcast Out Phases if sender is a ​gateway​, or the number of Broadcast
In Phases if sender is a ​node

24

SMK900 Integration Guide Revision 5

0x05 - … Payload
Up to 20*B bytes of data at 50kbit/sec, 72*B bytes of data at 100kbit/sec, where B is
the number of Broadcast Out Phases if sender is a ​gateway​, or the number of
Broadcast In Phases if sender is a ​node

TxReduxData
Special data send using the broadcast cycle ​redux phase. This command is only available for ​nodes
(​redux phase utilization is forbidden by ​gateway​), and only if the ​dynamic configuration ​of the
network has the redux phase enabled (see section 2.2 for more details). Note that no reply is tied to
this command.

 TxReduxData (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x07 = TxReduxData

0x04 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

RxDataPacket
Event message from transceiver to its host when it received a regular packet sent via ​TxLongData​.
Note that this packet type is also used as a special Broadcast End Marker, in which case the packet
byte stream is hard-coded to the following: [0xFB 0x03 0x00 0x26 0xFF 0x00], a marker that is sent at
the end of every broadcast cycle, before any ​air command is processed (and only if configuration
register in RAM bank ​enableNotificationFlagsMask​, flag ​CLOSEBROADCAST_bm, is set; see section
7.3 for details).

 RxDataPacket (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x26 = RxDataPacket

0x04 Broadcast Phase
ID

0x00-0x03 = Received packet Broadcast Phase ID; 0xFF = Broadcast End Marker
(special case)

0x05 RSSI 0x00-0xFF = Received packet strength (for regular received packet); this value is
forced to 0x00 if Broadcast Phase ID is 0xFF (Broadcast End Marker)

0x06 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

RxReduxDataPacket
Event message from transceiver to host when it receives a packet in the broadcast cycle ​redux phase.
This is only available if the current ​dynamic configuration​ of the network allows a ​redux​ phase.

 RxReduxDataPacket (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x28 = RxReduxDataPacket

0x04 RSSI 0x00-0xFF = Received packet strength

0x05 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

RXBcastInSniffedDataPacket
Event message from a ​node (exclusively) transceiver to host, when it receives a ​sniffed packet
transmitted from another ​node towards the network ​gateway ​via command ​TxLongData​. This

25

SMK900 Integration Guide Revision 5
message is only sent to transceiver host if the proper transceiver configuration register flag is set
(RAM bank register ​sniffFlagsMask​, flag ​BROADCASTIN_bm​, see section 7.3).

 RXBcastInSniffedDataPacket (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x29 = RXBcastInSniffedDataPacket

0x04 Broadcast Phase ID 0x00-0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00-0xFF = Received packet strength

0x06 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

BcastUART2TrxBufferDone
Event message sent from transceiver to host after the UART transmit buffer is cleared and its
corresponding data is transferred in RF packet buffers, ready to be transmitted out. This marker is
always sent at the beginning of a broadcast, even if the UART transmit buffer is clear (only if
configuration register in RAM bank ​enableNotificationFlagsMask​, flag
ENDUARTTRANSFERTOTXBUFFER_bm,​ is set; see section 7.3 for details).

 BcastUART2TrxBufferDone (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x2A = BcastUART2TrxBufferDone

RXBcastInSnifferAirDataPacket
Event message from a ​node ​(exclusively) transceiver to host, when it receives a ​sniffed packet
transmitted from another ​node ​towards the network ​gateway ​which contains an ​air command reply of
any kind (i.e. an ​air command reply sent back by a ​node ​after having received an ​air command sent by
a ​gateway​, the latter having sent it via command ​TXAirCmdWrapper​). This message is only sent to
transceiver host if the proper transceiver configuration register flag is set (RAM bank register
sniffFlagsMask​, flag ​BROADCASTIN_bm​, see section 7.3). Also note that the entirety of the raw
wrapped ​air command answer, including the sender ​node ​address bytes (if applicable), can be found
within the payload of this message.

 RXBcastInSnifferAirDataPacket (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x2B = RXBcastInSnifferAirDataPacket

0x04 Broadcast Phase ID 0x00-0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00-0xFF = Received packet strength

0x06 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

RXBcastOutSnifferAirCmd
Event message from a ​node ​(exclusively) transceiver to host, when it receives a ​sniffed packet
transmitted from a ​gateway ​towards another ​node ​which contains an ​air command of any kind (sent
via ​TXAirCmdWrapper​). This message is only sent to transceiver host if the proper transceiver
configuration register flag is set (RAM bank register ​sniffFlagsMask​, flag
BROADCASTOUT_AIR_bm​, see section 7.3). Also note that the entirety of the raw wrapped ​air
command​, including the requested ​node ​address bytes (if applicable, and possibly for multiple ​nodes​),
can be found within the payload of this message. Note that a supplementary parameter (Phase In
Count) is provided in this message in order for the recipient to know how many MAC addresses

26

SMK900 Integration Guide Revision 5
are in said ​air command​, which directly correlates with the current number of Broadcast In Phases of
the network (parameter B​I​, see section 2.2).

Note that although is in effect theoretically possible for a ​node ​to extrapolate this information by
retrieving the network ​dynamic configuration parameters, in order to get parameter B​I instead on
relying on the Phase In Count parameter of this event message, it is not a recommended practice.
Indeed, it would be possible for a network to dynamically change its current ​dynamic configuration
after the sniffed message arrives, but ​before the request for fetching the ​dynamic configuration is sent
(by reading RAM bank register ​dyn​; see section 7.3), thereby creating the low-level equivalent of a
"concurrency atomicity problem". Thus, the Phase In Count parameter is provided to user in order
to ensure atomicity when reading the current Broadcast In Phase count within the ​dynamic
configuration ​parameters of the mesh network.

 RXBcastOutSnifferAirCmd (event)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x2C = RXBcastOutSnifferAirCmd

0x04 Broadcast Phase ID 0x00-0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00-0xFF = Received packet strength

0x06 Phase In Count 0x01-0x04 = Number of Broadcast In Phases at sniffed message reception

0x07 - … Payload Up to 20 bytes of data at 50kbit/sec, 72 bytes of data at 100kbit/sec

DynConfig
This is the main command for changing the dynamic configuration of a network, and can only be
sent to a transceiver set as a ​gateway​. After this command is sent, a reply will acknowledge the
change request immediately if said request is valid (via a ​DynConfigReply message), and those
changes will be applied to the ​gateway ​mesh configuration at the beginning of the next broadcast
cycle (see section 2.2 for details about broadcast cycles, and for details about the DYN parameters),
or will return an error event message if the set of DYN parameters is deemed invalid. Note that the
new set of DYN parameters are then subsequently flooded to the whole of the mesh network via a
gateway ​broadcast out packet.

 DynConfig (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x07 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x0A = DynConfig

0x04 Phase Out Count 0x01-0x04 = Number of Broadcast Out Phases

0x05 Phase In Count 0x01-0x04 = Number of Broadcast In Phases

0x06 NumSeq 0x01-0x1F = Number of sequence slots (repeater hop count for mesh network)

0x07 NumSeqRedux 0x01 = Numer of sequence slots for redux phase (for the current firmware
version, only 1 value is supported)

0x08 ReduxEnableFlag 0x00-0x01 = Redux phase enable flag

0x09 DutyCycleDiv 0x01, 0x02, 0x05, 0x0A, 0x014, 0x28, 0x50 = Duty Cycle inverted

DynConfigReply
This is the reply message corresponding to ​gateway ​command ​DynConfig​, and is sent from ​gateway
transceiver back to its host if the requested DYN configuration changes are deemed valid.

 DynConfigReply (reply)

Byte offset Field Description

27

SMK900 Integration Guide Revision 5
0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x1A = DynConfigReply

GetRegister
This is a configuration parameter register read command, in a certain register bank, and with a
given offset (see section 7.3 for specific configuration register details). Note that the correct
expected register size has to be provided as an argument, as the transceiver will use this to verify
validity of the ​GetRegister command (in case of an invalid size, it will return an error event
message). This command can be wrapped as an ​air command​.

 GetRegister (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x04 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x03 = GetRegister

0x04 Register Type 0x00=RAMBUF, 0x01=RAM, 0x02=EEPROM (configuration register bank
selector)

0x05 Register Offset 0x00-0x14 = Configuration register offset in register bank

0x06 Register Size 0x01-0x08 = Requested configuration register size

GetRegisterReply
This is the reply corresponding to ​GetRegister command. An equivalent ​air command ​reply wrapped
accordingly can be sent out from a ​node ​back to its ​gateway ​if the latter sent an ​air command with
GetRegister​ as the wrapped command.

 GetRegisterReply (reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length (0x04 + N) 0x00 = Number of bytes in message following this byte
(Little-Endian), where N is the Register Size parameter (see below)

0x03 Packet Type 0x13 = GetRegisterReply

0x04 Register Type 0x00=RAMBUF, 0x01=RAM, 0x02=EEPROM (configuration register bank
selector)

0x05 Register Offset 0x00-0x14 = Configuration register offset in register bank

0x06 Register Size 0x01-0x08 = Returned configuration register size (N)

0x07 - … Register content From 1 to 8 bytes of data (byte count is N): this is the content of register being
read, with variables or structures being stored in a Little-Endian manner

SetRegister
This is a configuration parameter register write command, in a certain register bank, and with a
given offset (see section 7.3 for specific configuration register details; note that some registers are
read-only). The correct expected register size has to be provided as an argument, as the transceiver
will use this to verify validity of the ​SetRegister command (in case of an invalid size, it will return an
error event message). This command can be wrapped as an ​air command​.

 SetRegister (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length (0x04 + N) 0x00 = Number of bytes in message following this byte
(Little-Endian), where N is the Register Size parameter (see below)

28

SMK900 Integration Guide Revision 5
0x03 Packet Type 0x04 = SetRegister

0x04 Register Type 0x00=RAMBUF (direct register writes disallowed for RAM and EEPROM
banks)

0x05 Register Offset 0x00-0x14 = Configuration register offset in register bank

0x06 Register Size 0x01-0x08 = Configuration register size (N) of register to be written

0x07 - … Register content From 1 to 8 bytes of data (byte count is N): this is the content of register being
modified, with variables or structures being stored in a Little-Endian manner

SetRegisterReply
This is the reply corresponding to ​SetRegister command. An equivalent ​air command ​reply wrapped
accordingly can be sent out from a ​node ​back to its ​gateway ​if the latter sent an ​air command with
SetRegister​ as the wrapped command.

 SetRegisterReply (reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x14 = SetRegisterReply

TransferConfig
This is a command for transferring content from one register bank to another bank (see section 7.3
for the definition of register banks), or to reset ​node ​to factory settings. Note that a factory reset
might set the ​node ​address to another address than its current address, in which case the ​node
address should be changed to its desired value immediately after a factory reset operation (either
via local ​SetRegister UART command writing new values in RAMBUF bank register ​addressBuf as
defined in section 7.3, followed by a ​TransferConfig command for RAMBUF to EEPROM, followed
by a device reset, or via the equivalent VM execution commands, which are defined in section 5).
This command can be wrapped as an ​air command​.

 TransferConfig (command)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x02 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x0B = TransferConfig

0x04 Transfer Type 0x00 = RAM->TMP, 0x01 = TMP->RAM, 0x02 = TMP->EEPROM, 0x03 = RESET
TO FACTORY DEFAULTS

TransferConfigReply
This is the reply corresponding to ​TransferConfig command. An equivalent ​air command ​reply
wrapped accordingly can be sent out from a ​node ​back to its ​gateway ​if the latter sent an ​air command
with ​TransferConfig​ as the wrapped command.

 TransferConfigReply (reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x01 0x00 = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x1B = TransferConfigReply

TXAirCmdWrapper
This command is used to wrap a local serial device command, so that it can be rerouted from a
gateway ​to a given set of ​nodes​, and executed there. This is useful when one needs to send a

29

SMK900 Integration Guide Revision 5
command to a ​node​, without local access to its serial communication bus, in which case the
command can be packaged within a ​TXAirCmdWrapper command, then sent via serial
communication bus to a ​gateway ​transceiver controlling the network which is connected to the ​node
in question. Said ​gateway ​then reroutes that command to the desired destination ​node(s) via the
mesh network. The ​node(s) then read that command, as if it received it via its own local serial
communication bus, except for the fact that all ​air commands are read by the ​node(s) only after a
broadcast cycle ended, just before they go into sleep mode (if sleep mode is enabled for any
particular ​node​).

Any ​node ​which executes any command is usually expected to generate a reply. Because an ​air
command is received via the mesh network, the corresponding reply is ​not transmitted over the
serial bus to a host locally connected to that ​node​, but is instead transmitted over the mesh network
back to the ​gateway​, which then proceeds to wrap the reply received in a ​RXAirCmdWrapper
message. That wrapped reply message is then sent out to the host connected to that ​gateway
transceiver.

Therefore, this command is only available for transceivers configured as ​gateways​. If a ​node ​wants to
sniff those special ​air command packets sent out from a ​gateway​, then it needs to use the event marker
RXBcastOutSnifferAirCmd​ (with proper concomitant configuration register flag set).

For a diagram detailing the whole flow of information and processing events related to it for ​air
commands​ and the corresponding ​air replies​, see section 7.2.23.

 TXAirCmdWrapper

(command wrapping another command for remoting)
Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x0C = TXAirCmdWrapper

0x04 Broadcast Phase ID 0x00-0x03 = Received packet Broadcast Phase ID

0x05 Wrapped Packet
Type

IF using MULTI-PHASE mode:
 0x0F = multiphase mode
ELSE:
 0x?? (not 0x0F) = any single command packet type byte for any command
 compatible with​ air command​ wrapping

0x06 -
(0x06+N-1)

Destination MAC
Address List

IF using MULTI-PHASE mode:
 N = M*B​I​ bytes, which is the concatenated series of M MAC address bytes
 for each ​node ​being queried (total number of ​nodes ​queried is B​I​, i.e.
 corresponds to the Broadcast In Phase count of the network)
ELSE:
 N = M bytes, which are the M MAC address bytes for the single ​node ​being
 queried

(0x06+N) - … Wrapped Partial
Payload

IF using MULTI-PHASE mode:
 Wrapped command message, with Start-of-Packet & Length word removed
ELSE:
 Wrapped command message, with Start-of-Packet & Length word &
 ​Packet Type byte of that command​ removed

30

SMK900 Integration Guide Revision 5

RXAirCmdWrapper
This event message is a wrapper message for any replies from a ​node ​transmitted back to the
gateway ​of a given mesh network (instead of being transmitted to a host locally connected to that
node ​via serial communication bus), and thus is the corresponding message to ​TXAirCmdWrapper
(see section 7.2.22 for details).

This reply message is only applicable for transceivers configured as ​gateways​. If a ​node ​needs to sniff
another ​node answer to an ​air command previously sent by ​gateway​, then that ​node ​needs to use the
event marker ​RXBcastInSnifferAirDataPacket (with proper concomitant configuration register flag
set).

 RXAirCmdWrapper
(event wrapping remote reply)

Byte offset Field Description

0x00 Start-of-Packet 0xFB = Indicates start of protocol formatted message

0x01 - 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte (Little-Endian)

0x03 Packet Type 0x2D = RXAirCmdWrapper

0x04 Broadcast Phase ID 0x00-0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00-0xFF = Received packet strength

0x06 Wrapped Packet
Type

IF Packet Type byte of corresponding ​air command has its bit 7 set (i.e. if
bit-masking that byte with 0x80 yields a non-zero result), then:
 0x??, which is the reply Packet Type byte matching said ​air command​,
 with its bit 7 set also
ELSE:
 0x??, which is the regular reply Packet Type byte matching said
 ​air command

0x07 -
(0x07+N-1)

Node MAC
Address

IF Packet Type byte of corresponding ​air command has its bit 7 set (i.e. if
bit-masking that byte with 0x80 yields a non-zero result), then:
 N = M bytes, which are the M MAC address bytes for the ​node
 answering said ​air command
ELSE:
 N = 0 bytes

(0x07+N) - … Wrapped Partial
Payload

Wrapped message, with Start-of-Packet & Length word & ​Wrapped Packet Type
byte of that wrapped reply message​ removed

Configuration Registers
There are three configuration parameter banks: the TMP bank (also called RAMBUF), RAM bank, and
EEPROM bank. The EEPROM allows a configuration that must stick through radio module reset or
power-down to be stored in non-volatile memory. The RAM bank is copied from the EEPROM bank at
boot-up, and is the main bank used by the mesh controller itself for its operations within its mesh network.

To control the mesh configuration registers, the SMK900 must be in protocol-formated mode. All three
banks can be read via ​GetRegister ​command. Write operations (SetRegister) are only allowed to the TMP
bank, and only to those registers. The proper procedure to change mesh configuration register, containing
critical parameters such as the NwkID or the HopTable are changed, is as follows:

1. Set registers in TMP bank to the desired value (using ​SetRegister​ command);
2. Transfer TMP bank to EEPROM bank (using ​TransferConfig​ command);
3. Reset the module to activate the changes into RAM bank (using ​DeviceReset​ command).

Here is a table summarizing the configuration parameter registers available to the user:

31

SMK900 Integration Guide Revision 5

Register table

Reg
ister
offs
et

Si
ze
(b
yt
es)

R
e
a
d
-
O
n
l
y
F
l
a
g

Register name Sub-register
name

Sub-regis
ter

location
(bit

offset)

Sub-re
gister
range

D
ef
au
lt
va
lu
e

Description

0 8 addressBuf - - N/
A MAC address buffer

1 1 addressBufLen - - 3 MAC address buffer length

2 6 R dyn BO 0 1..4 1 Dynamic configuration, Broadcast Out Phase Count

 BI 8 1..4 1 Dynamic configuration, Broadcast In Phase Count

 NH 16 2..31 5 Dynamic configuration, Number of Hops

 NR 24 1 1 Dynamic configuration, Number of Hops for Redux Phase

 R 32 0..1 0 Dynamic configuration, Redux Enable Flag

 D 40
1, 2, 5,
10, 20,
40, 80

10 Dynamic configuration, Inverted Duty Cycle

3 1 nwkId - - 0..7 0 Network ID

4 1 hopTable - - 0..5 0 FHSS Hop Table selection

5 1 power - - 0..1 1 Power selection (0=LO, 1=HI)

6 2 uart_bsel - - 1..6553
5

0x
93
D7

UART baudrate selector. See Serial Interface section for more details.

7 1 nodeType - - 0..1 1 Node Type (0=GATEWAY 1=NODE)

8 1 sleepMode - - 0..2 2 Sleep mode (0=IDLE, 1=RC, 2=EXTERNAL)

9 1 extSlpCtrlI2CAddres
s - - 0..127 0x

48 Ext Slp Ctrl I2C address

10 2 R extSlpCorrectionFact
or - - 0..6553

5
N/
A Correction Factor (current value)

11 1 presetRF - - 0..1 0 Preset RF configuration set (0=PRESET1_50K(default),
1=PRESET2_100K)

12 8 cryptoData_
qWord0 - - 0..2^64

-1 0 Data encryption key, first 8 bytes, Little Endian

13 8 cryptoData_
qWord1 - - 0..2^64

-1 0 Data encryption key, last 8 bytes, Little Endian

14 7 i2c delayClockLen 0 0..6553
5 16

I2C delay for clock generation. The I2C max clock speed is:
MaxSpeed[MHz] = 1 / (2 + 0.5*(delayClockLen)). Thus, a value of 16
yields a 100KHz max speed, and a value of 96 yields a 20KHz max
speed. Use lower clock values when using higher value resistor
pull-ups or when the capacitance charge on the I2C pins is higher than
usual.

 srcPort 16 0 0 I2C source port (hard-coded to the I2C pins assigned to module, for
the current firmware revision)

 pullupEnabledFlag 24 0..1 1 I2C internal weak pull-up on I2C pins (0 = disabled, 1 = enabled)

 powerBusMode 32 0..3 1

I2C Power Bus mode. Values possible are: 0 = DISABLED
(hi-impedance), 1 = NORMAL (pin state toggling between
hi-impedance and VCC connection depending on VM execution and
I2C commands - on if I2C command executed, and togglable via VM
commands), 2 = ALWAYSOFF (pin connected to ground), 3 =
ALWAYSON (pin connected to VCC)

32

SMK900 Integration Guide Revision 5
 powerBus_powerUp

Delay_msec 40 0..6553
5 0 I2C additional power-up delay for stabilization purpose (if needed)

15 1 meshExecActiveFlag SERIAL_bm 0 0..1 1 VM Execution Trigger Enable Flag On Serial Cmd Receive Event

 AIRCMD_bm 1 0..1 1 VM Execution Trigger Enable Flag On Air-Cmd Receive Event

 BOOTUP_bm 2 0..1 1 VM Execution Trigger Enable Flag On Boot-Up Event

 ENTER
SEEKMODE_bm 3 0..1 0 VM Execution Trigger Enable Flag On Enter Seek Mode Event

 LEAVE
SEEKMODE_bm 4 0..1 0 VM Execution Trigger Enable Flag On Leave Seek Mode Event

 ENTER
BROADCAST_bm 5 0..1 0 VM Execution Trigger Enable Flag On Enter Broadcast Event

 LEAVE
BROADCAST_bm 6 0..1 0 VM Execution Trigger Enable Flag On Leave Broadcast Event

 ENABLEVM
FLASHOP_bm 7 0..1 1 Enable VM Flash Operations Flag

16 1 sniffFlagsMask BROADCASTIN_bm 0 0..1 0 Enable ​node ​sniffing of broadcast in phase messages from other ​nodes
to ​gateway

 BROADCASTOUT_
AIR_bm 1 0..1 0 Enable ​node ​sniffing of broadcast out air commands to specific MAC

addresses that do not match address of said sniffer ​node

17 1 enableNotificationFl
agsMask

CLOSE
BROADCAST_bm 0 0..1 0 Enable broadcast end close event message report (via special

RxDataPacket event message with Broadcast phase ID = 0xFF)

ENDUART

TRANSFERTO
TXBUFFER_bm

1 0..1 0 Enable uart transfer to TX buffer event message report (via
BcastUART2TrxBufferDone event message)

18 8 gpStorage_
qWord0 - - 0..2^64

-1 0 General purpose storage buffer, bytes [0,7]

19 8 gpStorage_
qWord1 - - 0..2^64

-1 0 General purpose storage buffer, bytes [8,15]

20 8 gpStorage_
qWord2 - - 0..2^64

-1 0 General purpose storage buffer, bytes [16,23]

21 1 versionBundle.versio
n - - 0..255 1 Firmware version of the module.

22 8 cryptoCfg 0..2^64
-1 0

23 cryptoCfg 0..2^64
-1 0

24 R versionBundle.subV
ersion 0..255 Sub version of the firmware.

25 R versionBundle.dbVe
rsion 0..255 Database version of the firmware

26 R versionBundle.partN
umberVersion Hardware part number?

Registers Description

addressBuf
holds the address bytes for the transceiver. This buffer is always defined as having 8 bytes, and the
address is held in a Little-Endian format. The number of bytes used to form the effective address is
defined in subsequent register ​addressBufLen (register offset 0x01) from the left. For example an
addressBuf = [0x08 0x15 0x02 0x04 0x00 0x00 0x00 0x00] with ​addressBufLen = 3 will yield a 3-byte
MAC address of 2.21.8 (if one uses a 4-byte MAC convention, this can also be written as 0.2.21.8).

addressBufLen
holds the effective number of address bytes, as described above.

dyn
holds the dynamic configuration of the transceiver. This is the set of 6 parameters that determine
the configuration of the broadcast cycles and sleep intervals of a given mesh network, as described
in ​dynamic parameters section​. This register is read-only, because only a transceiver configured as
a ​gateway ​is allowed to change the dynamic configuration of the whole network it is attached to
(and this is not done via asynchronous writing to the ​dyn register in the RAM bank directly, but is
rather accomplished using a special command, which schedules a change action of the ​dyn
parameters in the RAM bank in such a way that the change becomes effective at the beginning of
the next broadcast cycle).

33

SMK900 Integration Guide Revision 5

nwkID
holds the network ID of the network that the transceiver is allowed to receive and transmit to. This
is used as a basic packet filter in such a way that any network using the same frequency hop
sequence than the transceiver, but with a different configured network ID, will be effectively
invisible to said transceiver. Range of valid ​nwkID is from 0 to 7 (i.e. 8 different possible values). A
given network access key can be uniquely configured using a given set of 4 configuration registers:
nwkID​, ​hopTable​, ​cryptoData_qWord0​, and ​cryptoData_qWord1​.

hopTable
holds the current hop sequence of the network intended to be connected to the transceiver. This
variable ranges from 0 to 5 (i.e. 6 different possible values). Combined with ​nwkID​,
cryptoData_qWord0 and ​cryptoData_qWord1​, this defines a unique network access key. Note that if
one discounts the use of encryption keys, then it would be possible to combine ​hopTable and ​nwkID
in such a way that the combined number becomes an extended "channel number". For instance, one
could define an arbitrary configuration variable CHANNEL with the following mapping: ​hopTable
= CHANNEL % 6 + HOPTABLE_OFFSET, and ​nwkID = CHANNEL % 8 + NWKID_OFFSET, where
HOPTABLE_OFFSET and NWKID_OFFSET are arbitrarily chosen numbers. This would extend the
maximum number of channels to effective

power
holds two different power presets, one at high power (1 = HI: 158mW) and the other at low power
(0 = LO: 40mW).

uart_bsel
baud rate selector register for the main UART communication bus. See section 3.0 for details on
how to configure this register.

nodeType
defines the type of transceiver, which can either be a ​gateway ​(​nodeType = 0) or an individual node of
the mesh (​nodeType​ = 1).

sleepMode
selects the active sleep clock in use with the transceiver. Idle mode (​sleepMode = 0) is a setting where
only the internal fast clock of the mesh controller is employed as the main sleep time base.
WARNING: this setting is the highest power consumption mode, and is mainly suitable for
transceivers wired on the electrical grid in some way, with high power availability off-grid.
Examples include typically transceivers configured as ​gateways​. RC mode (​sleepMode = 1) is a setting
where a lower power RC clock is used as the main sleep clock... This mode uses the higher-speed
clock in order to recalibrate the RC clock operation from broadcast cycle to broadcast cycle, in order
to compensate for clock frequency variation due to environmental changes such as temperature.
Note that even with this compensation in place, it is not suggested to use this sleep mode for sleep
intervals between broadcast cycles higher than 2 seconds. Finally, external sleep controller mode
(​sleepMode = 2) allows the use of a dedicated Smartrek external sleep controller chip in I2C slave
mode in order to retro-fit ultra-low power consumption capabilities for longer sleep period of times
(> 2 seconds, up to about 20 seconds). This chip is to be connected to the main transceiver using the
transceiver I2C lines. Pull-up resistor values suggested for that I2C bus is 2 kOhms or less, and

34

SMK900 Integration Guide Revision 5
powered with an input voltage between 3.3 and 5.5 V. See section 6.3 for more details on how to
integrate the external sleep controller chip.

extSlpCtrlI2CAddress
external sleep controller I2C address, if external sleep controller is selected as the main ​sleepMode
mode of operation. Default factory-configured I2C address is 0x48 (note that the external sleep
controller itself can have its own internal address changed via I2C command (see section 6.3 for
more details).

extSlpCorrectionFactor
this is a read-only register indicating the current correction factor compensating for the external
sleep controller crystal drift (see section 6.3 for more details).

presetRF
this is the current RF parameter preset for the transceiver (default value is ​presetRF = 0) and
corresponds to a RF bitrate of 50 kbit/sec. Currently, it is the only suggested preset, and for this
preset, the data payload of every packet is limited to 20 bytes. For the ​presetRF = 1 set of parameters,
it is a (beta-stage) preset for 100 kbit/sec mode of operation with a somewhat larger maximum data
payload size (72 bytes).

cryptoData_qWord0
AES-128 16-byte key least significant 8 bytes (Little-Endian). This register, combined with its
counterpart ​cryptoData_qWord1​, ​nwkId and ​hopTable​, constitutes the set of registers for a given
network access key.

cryptoData_qWord1
AES-128 16-byte key most significant 8 bytes (Little-Endian). This register, combined with its
counterpart ​cryptoData_qWord0​, ​nwkId and ​hopTable​, constitutes the set of registers for a given
network access key.

i2c
register set for I2C bus configuration parameters. The following sub-registers are defined:
● delayClockLen - I2C maximum clock speed parameter, which defines the minimum duration
of an I2C bit in the following fashion: ​MaxSpeed[MHz] = 1 / (2 + 0.5*(delayClockLen))​;
● srcPort​ - I2C port selector (must be set to 0 in the current firmware revision);
● pullupEnabledFlag - enables or disables the internal resistor pull-ups for I2C port (those are
very weak >10kOhm pull-ups, and will not satisfy the I2C rise-time specifications by default);
● powerBusMode - selects the operation mode for I2C Power Pin (module pin #4, see section
6.1). Values possible are: 0 = DISABLED (hi-impedance), 1 = NORMAL (pin state toggling between
hi-impedance and VCC connection depending on VM execution and I2C commands - on if I2C
command executed, and togglable via VM commands), 2 = ALWAYSOFF (pin connected to
ground), 3 = ALWAYSON (pin connected to VCC). Note about NORMAL mode: every time the I2C
bus is used in order for the mesh controller to interact with an external sleep controller, the I2C
Power Pin will be connected to VCC temporarily, then shut down and set to high impedance when
that transaction is done. For user-customized control of this pin, see section 5 for details;
● powerBus_powerUpDelay_msec - delay automatically applied after the I2C Power Pin
(module pin #4, see section 6.1) is auto-connected to VCC, in milliseconds, for hardware
stabilization purposes.

35

SMK900 Integration Guide Revision 5

meshExecActiveFlag
bit-mask register in order to set up event trigger points that are to activate a VM user-made
program. All bit flags are considered enabled when their binary value is 1, and disabled when their
binary value is 0. The bit-mask constants corresponding to each trigger point as defined in section 5
are:

Constant name
Bit

positio
n

Bit-mask
value Description

SERIAL_bm 0 0x01

Activate virtual machine when a serial command for VM Exec
has been received locally (see section 5 for details) via the
UART communication bus. In this case, the VM command is
executed on the spot when the serial command is received.
Note that if the VM is executed during an active broadcast
cycle, the virtual machine engine will always yield to the mesh
protocol controller software when the latter needs to execute
timing-critical operations for synchronizing the transceiver
with its mesh network, as for any local serial commands (see
section 3.0 for details).

AIRCMD_bm 1 0x02

Activate virtual machine in a ​node ​when an air command for
VM Exec (i.e. command wrapped with an Air Cmd. Wrapper)
from a ​gateway ​has been received via a ​gateway ​broadcast out
phase (see section 5 for details). In this case, the VM execution
command is executed at the end of the broadcast cycle in
which the air command was received, like any other air
command requests. Note that LEAVEBROADCAST_bm event
marker will be activated before said VM will be executed, if
that event marker is enabled.

BOOTUP_bm 2 0x04
Activate virtual machine when the main boot sequence and
configuration initialization of the transceiver finished
executing.

ENTERSEEKMODE_bm 3 0x08 Activate virtual machine when a ​node ​goes into seek mode (i.e.
searches for an existing mesh network to latch itself onto).

LEAVESEEKMODE_bm 4 0x10 Activate virtual machine when a ​node ​leaves seek mode (i.e.
just found an existing mesh network to latch itself onto).

ENTERBROADCAST_bm 5 0x20
Activate virtual machine when a transceiver (​gateway or ​node​)
starts a broadcast cycle (i.e. leaves sleep/idle state in between
broadcast cycles).

LEAVEBROADCAST_bm 6 0x40

Activate virtual machine when a transceiver (​gateway or ​node​)
broadcast cycle just ended (i.e. about to go to sleep). Note that
this event, if enabled, will be always triggered before any
pending VM execution request via air command (see above,
AIRCMD_bm) will be executed.

ENABLEVMFLASHOP_bm 7 0x80
Enable VM flash operations. This needs to be enabled for VM
programming operations to be available, and thus acts as a
safety lock flag.

sniffFlagsMask
flags which, when activated, enable sniffing of some types of packets, either from a ​gateway ​to
another ​node​, or vice versa. The concept of sniffing is only relevant when using UART command
mode, because transparent mode acts as a dumb point-to-multipoint serial link between all the
transceivers. Moreover, this mode is only relevant for air commands when considering packets
outgoing from a ​gateway ​to ​nodes​, because only this mode uses automatic packet filtering at the
destination transceiver site using the requested MAC address given by the ​gateway​. Indeed, all
regular long packet transmissions out in command mode are considered as being whole network
broadcasts, and are received by default by all ​node ​transceivers in the mesh network. Here is a
description table of the relevant flags:

Constant name Bit
position

Bit-mask
value Description

36

SMK900 Integration Guide Revision 5

BROADCASTIN_bm 0 0x01

Enable ​node sniffing of broadcast in phase messages from
other ​nodes to ​gateway​. All broadcast in that was sent in
command mode by another ​node​, be it an air command or a
regular packet transmission, will be read by the sniffing
transceiver when this mode is activated.

BROADCASTOUT_AIR_bm 1 0x02

Enable ​node sniffing of broadcast out air commands to
specific MAC addresses that do not match address of said
sniffer ​node​. Note that this mode only applies for air
commands sent from a ​gateway ​out.

enableNotificationFlagsMask
flags enabling special notification UART messages for some useful events. Here is a description
table of the relevant flags:

Constant name
Bit

pos-iti
on

Bit-ma
sk

value
Description

CLOSEBROADCAST_bm 0 0x01

Enable broadcast end close event message report (via
special RxDataPacket event message with Broadcast
phase ID = 0xFF). If this is activated, the following raw
UART message will be sent from transceiver to the host
in order to mark the end of a broadcast (this always occur
before any air command is processed, as explained in
section 5):
[0xFB 0x03 0x00 0x26 0xFF 0x00]

ENDUARTTRANSFERTOTXBUFFER_bm 1 0x02

Enable UART transfer to TX buffer event message report
(via BcastUART2TrxBufferDone event message). This
marker will be sent from transceiver to the host in order
to mark a transfer from internal UART buffer of a
message to the main RF packet buffers, in which case a
new UART message can now be queued in the UART
buffer. This event occurs at the very beginning of every
broadcast cycle, and is triggered even if no UART
message is pending (in that case, the byte transfer count
internally to the transceiver is zero, but the transfer event
still occurs) The raw UART message sent to host for this
event marker is:
[0xFB 0x01 0x00 0x2A]

gpStorage_qWordx
gpStorage_qWord0​, ​gpStorage_qWord1​, ​gpStorage_qWord2 - 8 byte sized general purpose registers,
that are usually employed as general storage space for a VM user program so that variables can be
carried over from a given VM execution instance to the next (see section 5 for more details).
Moreover, because those registers exist in both RAMBUF, RAM and EEPROM banks, the latter
(EEPROM) can be used as non-volatile general purpose storage space for a given VM user
program.

37

SMK900 Integration Guide Revision 5

Developer Kit

Portia Adapter Board
The Portia Adapter Board is provided in the development kit in order to connect a Portia SMK900 radio
module to a USB serial device such as a PC or laptop This is especially useful, when developing, to
monitor the mesh network, to generate/modify/upload a Virtual Machine firmware. Additionally, the
adapter board features a breadboard footprint compatible dual inline package (DIP). Note that two 15
positions male headers with 100 mil spacing have to be soldered .

Arduino-compatible Shield
The Arduino-compatible Shield can be used for fast prototyping by leveraging the extensive Arduino
library

38

SMK900 Integration Guide Revision 5

SMK900 Certifications Information
Smartrek Technologie module
FCC ID: 2AP8V-SMK900
IC: 24079-SMK900

United State (FCC)

Note: This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference in a residential installation. This equipment generates, uses and can radiate radio
frequency energy and, if not installed and used in accordance with the instructions, may cause harmful
interference to radio communications. However, there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the

receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Antenna Gain Restriction and MPE Statement:
The SMK900 radio has been designed to operate with any dipole antenna of up to 3 dBi of gain. The
antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from
all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

IMPORTANT: The SMK900 Module has been certified by the FCC for use with other products without any
further certification (as per FCC section 2.1091). Modifications not expressly approved by Smartrek
Technologies could void the user's authority to operate the equipment.

IMPORTANT: OEMs must test final product to comply with unintentional radiators (FCC section 15.107
and 15.109) before declaring compliance of their final product to Part 15 of the FCC rules.

IMPORTANT: The RF module has been certified for remote and base radio applications. If the module will
be used for portable applications, please take note of the following instructions the device must undergo
SAR testing.

OEM labeling requirements: ​As an Original Equipment Manufacturer (OEM) you must ensure that FCC
labeling requirements are met. You must include a clearly visible label on the outside of the final product
enclosure that displays the following content:

Contains FCC ID: 2AP8V-SMK900
The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the
following two conditions: (i.) this device may not cause harmful interference and (ii.) this
device must accept any interference received, including interference that may cause undesired
operation.

39

SMK900 Integration Guide Revision 5

Remarque : Cet équipement a été testé et déclaré conforme aux limites d'un appareil numérique de classe B,
conformément à la partie 15 des règlements de la FCC. Ces limites sont conçues pour fournir une protection
raisonnable contre les interférences nuisibles dans une installation résidentielle. Cet équipement génère,
utilise et peut émettre de l'énergie radiofréquence et, s'il n'est pas installé et utilisé conformément aux
instructions, peut causer des interférences nuisibles aux communications radio. Cependant, il n'y a aucune
garantie que des interférences ne se produiront pas dans une installation particulière. Si cet équipement
cause des interférences nuisibles à la réception de la radio ou de la télévision, ce qui peut être déterminé en
éteignant et en rallumant l'équipement, l'utilisateur peut tenter de corriger ces interférences par une ou
plusieurs des mesures suivantes :

- Réorienter ou déplacer l'antenne de réception.
- Augmenter la distance entre l'équipement et le récepteur.
-Brancher l'équipement dans une prise de courant sur un circuit différent de celui auquel le récepteur est
branché.
- Consulter le revendeur ou un technicien radio/TV expérimenté pour obtenir de l'aide.

Restriction de gain d'antenne FCC et déclaration MPE :
La radio SMK900 a été conçue pour fonctionner avec n'importe quelle antenne dipôle jusqu'à 3 dBi de gain.
L'antenne utilisée pour cet émetteur doit être installée à une distance de séparation d'au moins 20 cm de
toutes les personnes et ne doit pas être placée ou utilisée conjointement avec une autre antenne ou un autre
émetteur.

IMPORTANT : Le module SMK900 a été certifié par la FCC pour une utilisation avec d'autres produits
sans autre certification (selon la section 2.1091 de la FCC). Toute modification non expressément approuvée
par Smartrek Technologies pourrait annuler le droit de l'utilisateur d'utiliser l'équipement.

IMPORTANT : Les OEM doivent tester le produit final pour se conformer aux radiateurs non intentionnels
(articles 15.107 et 15.109 de la FCC) avant de déclarer la conformité de leur produit final à la partie 15 des
règles de la FCC.

IMPORTANT : Le module RF a été certifié pour les applications radio de base et à distance. Si le module
doit être utilisé pour des applications portables, veuillez prendre note des instructions suivantes, l'appareil
doit subir un test SAR.

Exigences d'étiquetage OEM : En tant que fabricant d'équipement d'origine (OEM), vous devez vous
assurer que les exigences d'étiquetage de la FCC sont respectées. Vous devez inclure une étiquette
clairement visible à l'extérieur de l'enveloppe du produit final qui affiche le contenu suivant :

Contient l'ID FCC : 2AP8V-SMK900
L'appareil fourni est conforme à la partie 15 des règlements de la FCC. L'exploitation est assujettie à aux
deux conditions : (i.) cet appareil ne doit pas causer d'interférences nuisibles et (ii.) cet appareil doit
doit accepter toute interférence reçue, y compris des interférences susceptibles de provoquer un
fonctionnement non désiré.

40

SMK900 Integration Guide Revision 5

ISED (Innovation, Science and Economic Development Canada)
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the
following two conditions: (1) this device may not cause interference, and (2) this device must accept any
interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de
licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de
brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d'en compromettre le fonctionnement.

Labeling requirements
Similarly to FCC, labeling requirements for Industry Canada must be clearly visible label on the outside of
the final product enclosure and must display the following text.

Contains IC: 24079-SMK900

The integrator is responsible for its product to comply with IC ICES-003 & FCC Part 15, Sub. B
Unintentional Radiators. ICES-003 is the same as FCC Part 15 Sub. B and Industry Canada accepts FCC test
report or CISPR 22 test report for compliance with ICES-003.

41

SMK900 Integration Guide Revision 5

ANNEXE

Virtual Machine IDE

SMK900.evi include file
Here is the code listing for the required include file with all constant and function defines that allows access
to transceiver-specific functions:

//hop table specs

#define​ ​HOPTABLE_50K_START​ 0
#define​ ​HOPTABLE_50K_COUNT​ 6

//nwk max count

#define​ ​NWK_COUNT​ 8

//MeshExecType

#define​ ​MESHEXECTYPE_SERIAL_bm​ 0x01
#define​ ​MESHEXECTYPE_AIRCMD_bm 0x02
#define​ ​MESHEXECTYPE_BOOTUP_bm​ 0x04
#define​ ​MESHEXECTYPE_ENTERSEEKMODE_bm​ 0x08
#define​ ​MESHEXECTYPE_LEAVESEEKMODE_bm​ 0x10
#define​ ​MESHEXECTYPE_ENTERBROADCAST_bm​ 0x20
#define​ ​MESHEXECTYPE_LEAVEBROADCAST_bm 0x40

#define​ ​MESHEXECTYPE_ENABLEVMFLASHOP_bm​ 0x80

#define​ ​MESHI2CPOWERBUSMODE_DISABLED​ 0
#define​ ​MESHI2CPOWERBUSMODE_NORMAL​ 1
#define​ ​MESHI2CPOWERBUSMODE_ALWAYSOFF​ 2
#define​ ​MESHI2CPOWERBUSMODE_ALWAYSON​ 3

#define​ ​I2CMASTER_READMODE_bm​ 0x01

#define​ ​REGISTER_GPSTORAGE_COUNT​ 3
#define​ ​REGISTER_ADDRESS​ 0x00
#define​ ​REGISTER_ADDRESSLEN​ 0x01
#define​ ​REGISTER_DYN​ 0x02
#define​ ​REGISTER_NWKID​ 0x03
#define​ ​REGISTER_HOPTABLE​ 0x04
#define​ ​REGISTER_POWER​ 0x05
#define​ ​REGISTER_UARTBSEL ​0x06
#define​ ​REGISTER_NODETYPE​ 0x07
#define​ ​REGISTER_SLEEPMODE​ 0x08
#define​ ​REGISTER_EXTSLEEPI2CADDRESS​ 0x09
#define​ ​REGISTER_EXTSLEEPCORRECTIONFACTOR​ 0x0A
#define​ ​REGISTER_PRESETRF​ 0x0B
#define​ ​REGISTER_CRYPTODATA_KEY_0​ 0x0C
#define​ ​REGISTER_CRYPTODATA_KEY_1​ 0x0D
#define​ REGISTER_I2C ​0x0E
#define​ ​REGISTEROFFSET_I2C_DELAYCLOCKLEN​ 0
#define​ ​REGISTEROFFSET_I2C_SRCPORT​ 2
#define​ ​REGISTEROFFSET_I2C_PULLUPENABLEDFLAG​ 3
#define​ ​REGISTEROFFSET_I2C_POWERBUSENABLED ​4
#define​ ​REGISTEROFFSET_I2C_POWERBUS_POWERUPDELAY_MSEC​ 5
#define​ ​REGISTER_MESHEXECACTIVEFLAG​ 0x0F
#define​ ​REGISTER_SNIFFBROADCASTINENABLEDFLAG​ 0x10
#define​ ​REGISTER_ENABLENOTIFICATIONFLAGSMASK​ 0x11
#define​ ​REGISTER_GPSTORAGE_0​ 0x12
#define​ ​REGISTER_GPSTORAGE_1​ 0x13
#define​ ​REGISTER_GPSTORAGE_2​ 0x14

#define​ ​GetBuffer_S8​(r) $uf0(0x20, r)
#define​ ​GetBuffer_U8​(r) $uf0(0x21, r)
#define​ ​GetBuffer_16​(r) $uf0(0x22, r)
#define​ ​InvBuffer_S32​(r) $uf0(0x25, r)
#define​ ​AddBuffer_32​(r1,r2) $uf0(0x43, r1, r2)
#define​ ​MulBuffer_S32​(r1,r2) $uf0(0x45, r1, r2)
#define​ ​DivBuffer_S32​(r1,r2) $uf0(0x46, r1, r2)
#define​ ​CompBuffer_S32​(r1,r2) $uf0(0x47, r1, r2)
#define​ ​GetRegisterRAMBUF​(r,regOffset) $uf0(0x50, r, regOffset)
#define​ ​GetRegisterRAM​(r,regOffset) $uf0(0x51, r, regOffset)
#define​ ​GetRegisterEEPROM​(r,regOffset) $uf0(0x52, r, regOffset)
#define​ ​SetRegisterRAMBUF​(r,regOffset) $uf0(0x54, r, regOffset)
#define​ ​ShiftLeftBuffer_U32​(r,shLeft) $uf0(0x57, r, shLeft)
#define​ ​CopyBuffer​(r1,r2,len) $uf0(0x60, r1, r2, len)
#define​ ​SetBuffer​(r,val,len) $uf0(0x70, r, val, len)
#define​ ​GetAirBuf​(r,i,len) $uf0(0x74, r, i, len)
#define​ ​GetTxBuf​(r,i,len) $uf0(0x75, r, i, len)

#define​ ​GetAirBufCount​() GetAirBuf(0,0,0)
#define​ ​GetTxBufCount​() GetTxBuf(0,0,0)

42

SMK900 Integration Guide Revision 5
#define​ ​GetExecType​() $uf1(0x00)
#define​ ​GetRSSI​() $uf1(0x01)
#define​ ​TransferConfigRAMBUF​() $uf1(0x08)
#define​ ​TransferConfigRAM​() $uf1(0x09)
#define​ TransferConfigEEPROM​() $uf1(0x0A)
#define​ ​ResetFactoryDefaults​() $uf1(0x0B)
#define​ ​Send​(count) $uf1(0x20, count)
#define​ ​Delay​(delay) $uf1(0x24, delay)
#define​ ​SetPinMirror​(type) $uf1(0x28, type)

#define​ ​I2CPowerBus_Activate​() $uf2(0x00)
#define​ ​I2CPowerBus_Deactivate​() $uf2(0x01)
#define​ ​I2C_Stop​() $uf2(0x04)
#define​ ​I2C_ReadAck​() $uf2(0x05)
#define​ ​I2C_ReadNak​() $uf2(0x06)
#define​ ​I2C_Start​(addr_rw) $uf2(0x20, addr_rw)
#define​ ​I2C_Write​(val) $uf2(0x21, val)

#define​ ​GetPinIn​(pinID) $uf3(pinID)
#define​ ​GetPinDir​(pinID) $uf3(pinID+0x10)
#define​ ​SetPinOut​(pinID, val) $uf3(pinID, val)
#define​ ​SetPinDir​(pinID, dir) $uf3(pinID+0x10, dir)

#define​ ​GetPerReg​(reg) $uf4(reg)
#define​ ​SetPerReg​(reg, val) $uf4(reg, val)

#define​ ​GetSignatureRow​(memOffset) $uf5(memOffset)

//here are the IO mapping to real XMEGA pins. Note that XMEGA PA1 reserved for I2CPowerBus, Mesh PA2/PA3 are

//reserved for I2C. PA5 is reserved to CTS. All those are potentially system critical,

//so access is NOT granted to them.

//-IO PIN---+---XMEGA PIN --+----EQV OEM DNT NAME---+---------- DNT-MESH Special function name

// | | |

// 0 | PA0 | ADC_EXT_RC | ADC_EXT

// 1 | PA4 | GPIO3 |

// 2 | PA6 | RTS | RTS

// 3 | PA7 | ADC0 | ADC0

// 4 | PB0 | ADC1 | ADC1

// 5 | PB2 | DAC0 | DAC0

// 6 | PB3 | DAC1 | DAC1

// 7 | PC4 | SS |

(SPI_SS), OC1A (TIMER TCC1 wave out ch A)

// 8 | PC5 | MOSI | SPI_MOSI, OC1B

(TIMER TCC1 wave out ch B)

// 9 | PC6 | MISO | SPI_MISO

// 10 | PC7 | SCLK | SPI_SCLK, MIRROR

PIN

// 11 | PD2 | DCD | DCD

(Broadcast phase indicator)

// 12 | PD3 | ACT | ACT (TX

LED, this is non critical, thus can be changed)

#define​ _PA0 0
#define​ _PA4 1
#define​ _PA6 2
#define​ _PA7 3
#define​ _PB0 4
#define​ _PB2 5
#define​ _PB3 6
#define​ _PC4 7
#define​ _PC5 8
#define​ _PC6 9
#define​ _PC7 10
#define​ _PD2 11
#define​ _PD3 12

//PERIPHERIAL REGISTER TABLE

#define​ _EVSYS_CH0MUX 0x0000
#define​ _EVSYS_CH1MUX 0x0100

#define​ _EVSYS_CH0CTRL 0x0001
#define​ _EVSYS_CH1CTRL 0x0101

#define​ _PORTA_PIN0CTRL 0x0002

#define​ _PORTA_PIN4CTRL 0x0003

#define​ _PORTA_PIN6CTRL 0x0004
#define​ _PORTA_PIN7CTRL 0x0104

#define​ _PORTB_PIN0CTRL 0x0005

#define​ _PORTB_PIN2CTRL 0x0006
#define​ _PORTB_PIN3CTRL 0x0106

#define​ _PORTC_PIN4CTRL 0x0007
#define​ _PORTC_PIN5CTRL 0x0107
#define​ _PORTC_PIN6CTRL 0x0207
#define​ _PORTC_PIN7CTRL 0x0307

#define​ _PORTD_PIN2CTRL 0x0008

43

SMK900 Integration Guide Revision 5
#define​ _PORTD_PIN3CTRL 0x0108

#define​ _DACB_CTRLA 0x0009
#define​ _DACB_CTRLB 0x0109
#define​ _DACB_CTRLC 0x0209
#define​ _DACB_EVCTRL 0x0309
#define​ _DACB_TIMCTRL 0x0409
#define​ _DACB_STATUS 0x0509

#define​ _DACB_GAINCAL 0x000A
#define​ _DACB_OFFSETCAL 0x010A

#define​ _DACB_CH0DATAL 0x000B
#define​ _DACB_CH0DATAH 0x010B
#define​ _DACB_CH1DATAL 0x020B
#define​ _DACB_CH1DATAH 0x030B

#define​ _ADCA_CTRLA 0x000C
#define​ _ADCA_CTRLB 0x010C
#define​ _ADCA_REFCTRL 0x020C
#define​ _ADCA_EVCTRL 0x030C
#define​ _ADCA_PRESCALER 0x040C

#define​ _ADCA_INTFLAGS 0x000D

#define​ _ADCA_CALL 0x000E
#define​ _ADCA_CALH 0x010E

#define​ _ADCA_CMPL 0x000F
#define​ _ADCA_CMPH 0x010F

#define​ _ADCA_CH0_CTRL 0x0010
#define​ _ADCA_CH0_MUXCTRL 0x0110

#define​ _ADCA_CH0_INTFLAGS 0x0011
#define​ _ADCA_CH0_RESL 0x0111
#define​ _ADCA_CH0_RESH 0x0211

#define​ _ADCA_CH1_CTRL 0x0012
#define​ _ADCA_CH1_MUXCTRL 0x0112

#define​ _ADCA_CH1_INTFLAGS 0x0013
#define​ _ADCA_CH1_RESL 0x0113
#define​ _ADCA_CH1_RESH 0x0213

#define​ _SPIC_CTRL 0x0014

#define​ _SPIC_STATUS 0x0015
#define​ _SPIC_DATA 0x0115

#define​ _TCC1_CTRLA 0x0016
#define​ _TCC1_CTRLB 0x0116
#define​ _TCC1_CTRLC 0x0216
#define​ _TCC1_CTRLD 0x0316
#define​ _TCC1_CTRLE 0x0416

#define​ _TCC1_CTRLFCLR 0x0017
#define​ _TCC1_CTRLFSET 0x0117
#define​ _TCC1_CTRLGCLR 0x0217
#define​ _TCC1_CTRLGSET 0x0317
#define​ _TCC1_INTFLAGS 0x0417

#define​ _TCC1_CNTL 0x0018
#define​ _TCC1_CNTH 0x0118

#define​ _TCC1_PERL 0x0019
#define​ _TCC1_PERH 0x0119
#define​ _TCC1_CCAL 0x0219
#define​ _TCC1_CCAH 0x0319
#define​ _TCC1_CCBL 0x0419
#define​ _TCC1_CCBH 0x0519

#define​ _TCC1_PERBUFL 0x001A
#define​ _TCC1_PERBUFH 0x011A
#define​ _TCC1_CCABUFL 0x021A
#define​ _TCC1_CCABUFH 0x031A
#define​ _TCC1_CCBBUFL 0x041A
#define​ _TCC1_CCBBUFH 0x051A

//the following not available for module_Mesh_V2 (only for V3 onwards)

#define​ _ACA_AC0CTRL 0x001B
#define​ _ACA_AC1CTRL 0x011B
#define​ _ACA_AC0MUXCTRL 0x021B
#define​ _ACA_AC1MUXCTRL 0x031B
#define​ _ACA_CTRLA 0x041B
#define​ _ACA_CTRLB 0x051B
#define​ _ACA_WINCTRL 0x061B
#define​ _ACA_STATUS 0x071B

44

